Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Full Anelastic Waveform Tomography Including Model Uncertainty
Date
2008-12-01
Author
Askan Gündoğan, Ayşegül
Bielak, Jacobo
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
This article is concerned with the problem of seismic inversion in the presence of model uncertainty. In a recent article (Askan et al., 2007), we described an inverse adjoint anelastic wave propagation algorithm for determining the crustal velocity and attenuation properties of basins in earthquake-prone regions. We formulated the tomography problem as a constrained optimization problem where the constraints are the partial and the ordinary differential equations that govern the anelastic wave propagation from the source to the receivers. We employed a wave propagation model in which the intrinsic energy-dissipating nature of the soil medium was modeled by a set of standard linear solids. Assuming no information was initially available on the target shear-wave velocity distribution, we employed a homogeneous shear-wave velocity profile as the initial guess. In practice, some information is usually available. The purpose of the present article is to modify our nonlinear inversion method to start from an initial velocity model, and include a priori information regarding the initial model parameters in the misfit (objective) function. To represent model uncertainties, given an initial velocity model, in addition to the data misfit term in our objective function, we include an L(2)-normed weighting term, which quantifies the model estimation errors, independently of the measured data. We use total variation (TV) regularization to overcome ill posedness. We illustrate the methodology with pseudo-observed data from two-dimensional sedimentary models of the San Fernando Valley, using a source model with an antiplane slip function.
Subject Keywords
Aperture seismic data
,
Complex structures
,
Frequency-domain
,
Adjoint methods
,
Inversion
,
Velocity
,
Kernels
,
Time
URI
https://hdl.handle.net/11511/33265
Journal
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
DOI
https://doi.org/10.1785/0120080138
Collections
Department of Civil Engineering, Article