Peak ground velocity sensitive deformation demands and a rapid damage assessment approach

The effect of peak ground velocity (PGV) on the maximum inelastic deformation demand of simple, non-degrading structural systems is studied. Ground motion data sets are assembled for pre-defined ranges of PGV and they are used to conduct nonlinear response history analysis of single-degree-of-freedom (SDOF) systems. The study is focused on short and intermediate periods of vibration (T) and strength reduction factor (R) is used to define the lateral capacity of the structure. As part of the study, a simple tool for rapid damage assessment in pre-earthquake evaluation of existing building systems is proposed that combines the ground motion parameter PGV with structural properties R and T.


A(p)/V-p specific inelastic displacement ratio for the seismic response estimation of SDOF structures subjected to sequential near fault pulse type ground motion records
DURUCAN, CENGİZHAN; Durucan, Ayse Rusen (2016-10-01)
This research study is focused on an improved statistical equation proposed to estimate the inelastic displacement ratio, C-1, of structures subjected to sequential (pre-shock, main shock, after shock) pulse type near fault (NF) ground motions. Proposed equation considers the effects of fundamental vibration period of the structure, T, lateral strength ratio, R, and frequency content of the design earthquake on the variation of the response. Frequency content of the design earthquake, represented by the A(p...
Target damage level assessment for seismic performance evaluation of two-column reinforced concrete bridge bents
Yilmaz, Taner; Caner, Alp (IOS Press, 2012-01-01)
Displacement capacity verification analysis is usually used to evaluate the level of displacement at which structural elements reach their inelastic deformation capacities. In engineering practice, a modified version of displacement capacity analysis is used in the seismic performance assessment of bridge structures as an alternative to ductility and drift based approaches. In this seismic performance evaluation for a given target damage level, top bent displacement demand should not exceed a certain fracti...
Direct use of PGV for estimating peak nonlinear oscillator displacements
Akkar, Dede Sinan; Kucukdogan, Bilge (2008-10-10)
A predictive model is presented for estimating the peak inelastic oscillator displacements (S-d,S-ie) from peak ground velocity (PGV). The proposed model accounts for the variation of S-d,S-ie for bilinear hysteretic behavior under constant ductility (mu) and normalized lateral strength ratio (R) associated with postyield stiffness ratios of alpha = 0 and 5%. The regression coefficients are based on a ground-motion database that contains dense-to-stiff soil site recordings at distances of up to 30 km from t...
Estimation of lining thickness around circular shafts
Ozturk, H; Unal, E (2001-06-22)
In this paper, the broken zone developing, around a circular mine shafts and lining pressure is estimated by integrating the results of numerical analysis and the "rock-load height" equation derived from empirical analysis. During numerical modelling studies, the computer program FLAC(2D) was utilized. In order to estimate equivalent Mohr failure Envelope from the generalised Hoek Brown failure criterion, a new FISH function was written within FLAC(2D). Parametric studies were carried out by considering mRM...
Critical flow velocity in slurry transporting horizontal pipelines
Kokpinar, MA; Göğüş, Mustafa (2001-09-01)
A new empirical equation is proposed for predicting critical flow velocity in slurry-transporting horizontal pipelines. An analysis of the settling velocity of solid particles, including the effect of solid particle concentration, is under-taken because of this parameter's importance. This study builds on a previous study carried out to consider the settling velocity of a single solid particle in clear-water condition, which is actually different from the real physics of the hydrotransport phenomenon of the...
Citation Formats
S. Akkar and H. Sucuoğlu, “Peak ground velocity sensitive deformation demands and a rapid damage assessment approach,” 2003, vol. 29, Accessed: 00, 2020. [Online]. Available: