DEGAS: An innovative earthquake-proof AAC wall system

2018-09-01
Canbay, Erdem
Binici, Barış
Uzgan, Ugur
ERYURTLU, ZAFER
BULBUL, KORAY
The in‐plane response of infill walls independent of the material used has been investigated thoroughly in the literature and the common observation on the response was the formation of both compression struts and tension struts. These struts in the diagonals of the infill walls are the main reason for the cracking and crushing of the infill wall material. Researchers have proposed some techniques that enhance the performance of infill walls. Most of the proposed methods include a special device or connection detailing to isolate the infill wall from the RC frame even during excessive lateral displacement demands.

Suggestions

Physics Based Formulation of a Cohesive Zone Model for Ductile Fracture
Yalçınkaya, Tuncay (2015-07-01)
This paper addresses a physics based derivation of mode-I and mode-II traction separation relations in the context of cohesive zone modeling of ductile fracture of metallic materials. The formulation is based on the growth of an array of pores idealized as cylinders which are considered as therepresentative volume elements. An upper bound solution is applied for the deformation of the representative volume element and different traction-separation relations are obtained through different assumptions.
MHD flow in a rectangular duct with a perturbed boundary
Fendoglu, Hande; Bozkaya, Canan; Tezer, Münevver (Elsevier BV, 2019-01-15)
The unsteady magnetohydrodynamic (MHD) flow of a viscous, incompressible and electrically conducting fluid in a rectangular duct with a perturbed boundary, is investigated. A small boundary perturbation e is applied on the upper wall of the duct which is encountered in the visualization of the blood flow in constricted arteries. The MHD equations which are coupled in the velocity and the induced magnetic field are solved with no-slip velocity conditions and by taking the side walls as insulated and the Hart...
Transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites
Şen, Özge; Turhan, Doğan; Department of Engineering Sciences (2005)
In this study, transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites is investigated. Thermal effects, in addition to mechanical effects, are taken into consideration. A generalized thermoelasticity theory which incorporates the temperature rate among the constitutive variables and is referred to as temperature-rate dependent thermoelasticity theory is employed. This theory predicts finite heat propagation speeds. The body considered in this thesis consists o...
Experimental Determination of Resistance Characteristics of Support Details Used in Prestressed Concrete Bridge Girders
Baran, Eray; French, Catherine; Schultz, Arturo (American Society of Civil Engineers (ASCE), 2009-09-01)
Static load tests were performed on support details used at the ends of prestressed concrete pedestrian bridge girders to determine the resistance characteristics of girder supports in the direction perpendicular to the longitudinal axis of the girders. The specimens tested represent support details that have also been widely used in prestressed concrete highway bridges in Minnesota and in other states. Two specimens, one representing the free-end detail and one representing the restrained-end detail were s...
Consistent matrices for steel framed structures with semi-rigid connections accounting for shear deformation and rotary inertia effects
ÖZEL, HALİL FIRAT; Sarıtaş, Afşin; Tasbahji, Tayseer (2017-04-15)
Estimation of vibration characteristics and thus the seismic loads acted on steel framed structures are influenced by the presence of semi-rigid connections and accurate modeling of shear deformations and rotary inertia effects. This paper presents a finite element model that takes into account all these effects in order to calculate consistent stiffness and mass matrices. The formulation of the element utilizes three fields Hu-Washizu-Barr principle, where the need for displacement shape function approxima...
Citation Formats
E. Canbay, B. Binici, U. Uzgan, Z. ERYURTLU, and K. BULBUL, “DEGAS: An innovative earthquake-proof AAC wall system,” 2018, vol. 2, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33277.