Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers

1996-12-01
Perfectly matched layers (PML's), which are employed for mesh truncation in the finite-difference time-domain (FDTD) or in finite element methods (FEM's), can be realized by artificial anisotropic materials with properly chosen permittivity and permeability tensors. The tensor constitutive parameters must satisfy the Kramers-Kronig relationships, so that the law of causality holds. These relations are used to relate the real and imaginary parts of the constitutive parameters of the PML media to deduce the asymptotic behaviors of these parameters at low and high frequencies.
IEEE MICROWAVE AND GUIDED WAVE LETTERS

Suggestions

Least-squares finite element solution of Euler equations with H-type mesh refinement and coarsening on triangular elements
AKARGUN, Hayri Yigit; Sert, Cüneyt (2014-01-01)
Purpose - The purpose of this paper is to demonstrate successful use of least-squares finite element method (LSFEM) with h-type mesh refinement and coarsening for the solution of two-dimensional, inviscid, compressible flows.
Conformal perfectly matched absorbers in finite element mesh truncation
Kuzuoğlu, Mustafa; Mittra, R (2000-07-21)
In the numerical solution of electromagnetic scattering and/or radiation problems by finite methods, a mesh truncation scheme must be employed in order to obtain a bounded computational domain. We discuss the realization of perfectly matched absorbers by means of a complex coordinate transformation in a general coordinate system. In this way, it is possible to design perfectly matched layers (PMLs) which are conformal to the antenna/scatterer surface. The performance of the PMLs are tested for certain probl...
Temperature dependence of magnetic and thermal properties of chiral HyFe and HyMn close to phase transitions by using the Landau mean field model
Tari, Ozlem; Yurtseven, Hasan Hamit (Elsevier BV, 2019-04-15)
Magnetic and thermal properties of chiral metal formate frameworks (MOFs) of NH2NH3M(HCOO)(3), M = Fe, Mn, namely, HyFe and HyMn are investigated close to phase transitions by using Landau phenomenological model. By expanding the free energy in terms of the order parameter, for magnetic properties the temperature dependence of magnetization and inverse magnetic susceptibility, and for thermal properties the heat capacity and entropy are calculated for chiral HyFe and HyMn close to phase transitions using th...
Contact mechanics problem between an orthotropic graded coating and a rigid punch of an arbitrary profile
ARSLAN, ONUR; Dağ, Serkan (Elsevier BV, 2018-01-01)
Singular integral equation (SIE) and finite element methods are developed for sliding contact analysis of a finite thickness orthotropic graded coating, which is perfectly bonded to an isotropic substrate. Orthotropic stiffness coefficients of the coating vary exponentially through the coating thickness. The coating is assumed to be loaded by a frictional rigid punch of an arbitrary profile. In the SIE formulation, governing partial differential equations are derived in accordance with the theory of plane e...
Measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) cross sections in pp collisions at root s=7 TeV
Chatrchyan, S.; et. al. (2013-11-01)
The Upsilon(1S), Upsilon(2S), and Upsilon(3S) production cross sections are measured using a data sample corresponding to an integrated luminosity of 35.8 +/- 1.4 pb(-1) of proton-proton collisions at root s = 7 TeV, collected with the CMS detector at the LHC. The Upsilon resonances are identified through their decays to dimuons. Integrated over the Upsilon transverse momentum range p(T)(Upsilon) < 50 GeV/c and rapidity range vertical bar y(Upsilon)vertical bar < 2.4, and assuming unpolarized Upsilon produc...
Citation Formats
M. Kuzuoğlu, “Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers,” IEEE MICROWAVE AND GUIDED WAVE LETTERS, pp. 447–449, 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33312.