Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Genetic algorithm-based regularization parameter estimation for the inverse electrocardiography problem using multiple constraints
Date
2013-04-01
Author
Serinağaoğlu Doğrusöz, Yeşim
Gavgani, Alireza Mazloumi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
0
downloads
Cite This
In inverse electrocardiography, the goal is to estimate cardiac electrical sources from potential measurements on the body surface. It is by nature an ill-posed problem, and regularization must be employed to obtain reliable solutions. This paper employs the multiple constraint solution approach proposed in Brooks et al. (IEEE Trans Biomed Eng 46(1):3-18, 1999) and extends its practical applicability to include more than two constraints by finding appropriate values for the multiple regularization parameters. Here, we propose the use of real-valued genetic algorithms for the estimation of multiple regularization parameters. Theoretically, it is possible to include as many constraints as necessary and find the corresponding regularization parameters using this approach. We have shown the feasibility of our method using two and three constraints. The results indicate that GA could be a good approach for the estimation of multiple regularization parameters.
Subject Keywords
Inverse electrocardiography
,
Multiple constraints
,
Regularization parameter
,
Genetic algorithm
URI
https://hdl.handle.net/11511/33331
Journal
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
DOI
https://doi.org/10.1007/s11517-012-1005-6
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Effects of a priori parameter selection in minimum relative entropy method on inverse electrocardiography problem
ONAK, Onder Nazim; Serinağaoğlu Doğrusöz, Yeşim; WEBER, GERHARD WİLHELM (2018-01-01)
The goal in inverse electrocardiography (ECG) is to reconstruct cardiac electrical sources from body surface measurements and a mathematical model of torso-heart geometry that relates the sources to the measurements. This problem is ill-posed due to attenuation and smoothing that occur inside the thorax, and small errors in the measurements yield large reconstruction errors. To overcome this, ill-posedness, traditional regularization methods such as Tikhonov regularization and truncated singular value decom...
Improved performance of Bayesian solutions for inverse Electrocardiography using multiple information sources
Serinağaoğlu Doğrusöz, Yeşim; MACLEOD, Robert (2006-10-01)
The usual goal in inverse electrocardiography (ECG) is to reconstruct cardiac electrical sources from body surface potentials and a mathematical model that relates the sources to the measurements. Due to attenuation and smoothing that occurs in the thorax, the inverse ECG problem is ill-posed and imposition of a priori constraints is needed to combat this ill-posedness. When the problem is posed in terms of reconstructing heart surface potentials, solutions have not yet achieved clinical utility; limitation...
SOLVING THE INVERSE PROBLEM OF ELECTROCARDIOGRAPHY FOR SPONTANEOUS PVC LOCALIZATION: ANALYSIS OF CLINICAL ELECTROCARDIOGRAPHIC DATA
Rasoolzadeh, Nika; Serinağaoğlu Doğrusöz, Yeşim; Department of Scientific Computing (2023-1-27)
The inverse problem of electrocardiography refers to the determination of the electrical activity of the heart from the body surface potential measurements (BSPM). Knowledge of the electrical activity state of the heart can provide valuable insights for the diagnosis of cardiac disorders and aid in the facilitation of the development of appropriate treatments. Consequently, efficient resolution of this problem has the potential to be of significant benefit to clinical practices, making it imperative to cont...
Combination of conventional regularization methods and genetic algorithm for solving the inverse problem of electrocardiography
Sarikaya, Sedat; Weber, Gerhard-Wilhelm; Serinağaoğlu Doğrusöz, Yeşim (2010-07-16)
Distribution of electrical potentials over the surface of the heart, which is called the epicardial potential distribution, is a valuable tool to understand whether there is a defect in the heart. Direct measurement of these potentials requires highly invasive procedures. An alternative is to reconstruct these epicardial potentials non-invasively from the body surface potentials, which constitutes one form of the ill-posed inverse problem of electrocardiography (ECG). The goal of this study is to solve the ...
Lanczos bidiagonalization-based inverse solution methods applied to electrical imaging of the heart by using reduced lead-sets: A simulation study
GHARBALCHİ, Fourough; Serinağaoğlu Doğrusöz, Yeşim; Weber, GERHARD WİLHELM (2016-01-01)
In inverse problem of electrocardiography (ECG), electrical activity of the heart is estimated from body surface potential measurements. This electrical activity provides useful information about the state of the heart, thus it may help clinicians diagnose and treat heart diseases before they cause serious health problems. For practical application of the method, having fewer number of electrodes for data acquisition is an advantage. Additionally, inverse problem of ECG is ill-posed due to attenuation and s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Serinağaoğlu Doğrusöz and A. M. Gavgani, “Genetic algorithm-based regularization parameter estimation for the inverse electrocardiography problem using multiple constraints,”
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
, pp. 367–375, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33331.