Machine Learning Models to Enhance the Science of Cognitive Autonomy

MANİ, Ganapathy
Angın, Pelin
KOBES, Jason
Intelligent Autonomous Systems (IAS) are highly cognitive, reflective, multitask-able, and effective in knowledge discovery. Examples of IAS include software systems that are capable of automatic reconfiguration, autonomous vehicles, network of sensors with reconfigurable sensory platforms, and an unmanned aerial vehicle (UAV) respecting privacy by deciding to turn off its camera when pointing inside a private residence. Research is needed to build systems that can monitor their environment and interactions, learn their capabilities and limitations, and adapt to meet the mission objectives with limited or no human intervention. The systems should be fail-safe and should allow for graceful degradations while continuing to meet the mission objectives. In this paper, we provide an overview of our proposed new methodologies and workflows, and survey the existing approaches and new ones that can advance the science of autonomy in smart systems through enhancements in real-time control, auto-reconfigurability, monitoring, adaptability, and trust. This paper also provides the theoretical framework behind IAS.


Cognitive Learner: An Ensemble Learning Architecture for Cognitive State Classification
Moğultay, Hazal (2017-05-18)
In this study, we propose an ensemble learning architecture called "Cognitive Learner", for classification of cognitive states from functional magnetic resonance imaging (fMRI). Proposed architecture consists of a two-layer hierarchy. In the first layer, called voxel layer, we model the connectivity among the voxel time series to represent the detailed information about the experiment. In the second layer, we cluster the voxel time series by using functional similarity measure, to partition the brain volume...
Learning transferability of cognitive tasks by graph generation for brain decoding
Coşkun, Bilgin; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2021-12-10)
Brain decoding involves analyzing the cognitive states of human brain by using some statistical techniques in order to understand the relations among the cognitive states, based on neuroimaging data. A very powerful tool to acquire the brain data is functional magnetic resonance images (fMRI), which generates three-dimensional brain volume at each time instant, while a subject performs a cognitive task involving social activities, emotion processing, game playing, memory etc. However, it is very difficult a...
Deep learning algorithm applied to daily solar irradiation estimations
Akbaba, Erol C.; Yüce, Emre; Akinoglu, Bulent G. (2018-07-02)
Deep learning is applied in many research areas, and in many of them remarkable outcomes are attained compared to conventional methods. There are quite a number of studies also in the estimation of solar irradiation. Estimation of solar irradiation is vitally important for the design of solar energy systems. In this work, multi-layer perceptron (MLPs) method of deep learning is used to develop an estimation method for calculating horizontal daily solar irradiation and the results are compared with classical...
2LRL: a two-level multi-agent reinforcement learning algorithm with communication
Erus, Guray; Polat, Faruk; Say, Bilge; Department of Cognitive Sciences (2002)
Learning is a key element of an "intelligent" computational system. In Multi- agent Systems (MASs), learning involves acquisition of a cooperative behavior in order to satisfy the joint goals. Reinforcement Learning (RL) is a promising unsupervised machine learning technique inspired from the earlier studies in animal learning. In this thesis, we propose the Two Level Reinforcement Learning with Communication (2LRL) method, a new RL technique to provide cooperative action selection in a multi-agent environm...
Encoding Multi-Resolution Brain Networks Using Unsupervised Deep Learning
Rahnama, Arash; Alchihabi, Abdullah; Gupta, Vijay; Antsaklis, Panos J.; Yarman Vural, Fatoş Tunay (2017-10-25)
The main goal of this study is to extract a set of brain networks in multiple time-resolutions to analyze the connectivity patterns among the anatomic regions for a given cognitive task. We suggest a deep architecture which learns the natural groupings of the connectivity patterns of human brain in multiple time-resolutions. The suggested architecture is tested on task data set of Human Connectome Project (HCP) where we extract multi-resolution networks, each of which corresponds to a cognitive task. At the...
Citation Formats
G. MANİ, B. BHARGAVA, P. Angın, M. VİLLARREAL VASQUEZ, D. ULYBYSHEV, and J. KOBES, “Machine Learning Models to Enhance the Science of Cognitive Autonomy,” 2018, Accessed: 00, 2020. [Online]. Available: