EndNet: Sparse AutoEncoder Network for Endmember Extraction and Hyperspectral Unmixing

Download
2019-01-01
Ozkan, Savas
Kaya, Berk
Akar, Gözde
Data acquired from multichannel sensors are a highly valuable asset to interpret the environment for a variety of remote sensing applications. However, low spatial resolution is a critical limitation for previous sensors, and the constituent materials of a scene can be mixed in different fractions due to their spatial interactions. Spectral unmixing is a technique that allows us to obtain the material spectral signatures and their fractions from hyperspectral data. In this paper, we propose a novel endmember extraction and hyperspectral unmixing scheme, so-called EndNet, that is based on a two-staged autoencoder network. This well-known structure is completely enhanced and restructured by introducing additional layers and a projection metric [i.e., spectral angle distance (SAD) instead of inner product] to achieve an optimum solution. Moreover, we present a novel loss function that is composed of a Kullback-Leibler divergence term with SAD similarity and additional penalty terms to improve the sparsity of the estimates. These modifications enable us to set the common properties of endmembers, such as nonlinearity and sparsity for autoencoder networks. Finally, due to the stochastic-gradient-based approach, the method is scalable for large-scale data and it can be accelerated on graphical processing units. To demonstrate the superiority of our proposed method, we conduct extensive experiments on several well-known data sets. The results confirm that the proposed method considerably improves the performance compared to the state-of-the-art techniques in the literature.
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Suggestions

Distributed Connectivity Restoration in Underwater Acoustic Sensor Networks via Depth Adjustment
Uzun, Erkay; ŞENEL, FATİH; Akkaya, Kemal; Yazıcı, Adnan (2015-06-12)
In most applications of Underwater Acoustic Sensor Networks, network connectivity is required for data exchange, data aggregation and relaying the data to a surface station. However, such connectivity can be lost due to failure of some sensor nodes which creates disruptions to the network operations. In this paper, we present two algorithms, namely BMR and DURA, which can detect network partitioning due to such node failures and re-establish network connectivity through controlled depth adjustment of nodes ...
Immune system based distributed node and rate selection in wireless sensor networks
Atakan, Baris; Akan, Ozguer B. (2006-12-13)
Wireless sensor networks (WSNs) are event-based systems that rely on the collective effort of dense deployed sensor nodes. Due to the dense deployment, since sensor observations are spatially correlated with respect to spatial location of sensor nodes, it may not be necessary for every sensor node to transmit its data. Therefore, due to the resource constraints of sensor nodes it is needed to select the minimum number of sensor nodes to transmit the data to the sink. Furthermore, to achieve the application-...
Immune system-based energy efficient and reliable communication in wireless sensor networks
Atakan, Baris; Akan, Oezguer B. (2006-12-01)
Wireless sensor networks (WSNs) are event-based systems that rely on the collective effort of densely deployed sensor nodes. Due to the dense deployment, since sensor observations are spatially correlated with respect to location of sensor nodes, it may not be necessary for every sensor node to transmit its data. Therefore, due to the resource constraints of sensor nodes, it is imperative to select the minimum number of sensor nodes to transmit the data to the sink. Furthermore, to achieve the application-s...
SWARM-based data delivery framework in the Ad Hoc Internet of Things
Hasan, Mohammed Zaki; Al-Turjman, Fadi (2017-12-08)
Internet of Things (IoTs) refers to the rapidly growing network of connected objects that are able to collect and exchange data using embedded sensors. To guarantee the connectivity among these objects and devices, fault tolerant routing has been received a significant attention in recent years. In this paper, we propose a bio-inspired particle multi-swarm optimization (PMSO) routing algorithm to construct, recover and select k-disjoint paths that tolerates the failure while satisfying quality of service (Q...
Optimizing Multipath Routing With Guaranteed Fault Tolerance in Internet of Things
Hasan, Mohammed Zaki; Al-Turjman, Fadi (2017-10-01)
Internet of Things (IoTs) refers to the rapidly growing network of connected objects and people that are able to collect and exchange data using embedded sensors. To guarantee the connectivity among these objects and people, fault tolerance routing has to be significantly considered. In this paper, we propose a bio-inspired particle multi-swarm optimization (PMSO) routing algorithm to construct, recover, and select k-disjoint paths that tolerates the failure while satisfying the quality of service parameter...
Citation Formats
S. Ozkan, B. Kaya, and G. Akar, “EndNet: Sparse AutoEncoder Network for Endmember Extraction and Hyperspectral Unmixing,” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, pp. 482–496, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34402.