Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Hamiltonian electric/magnetic duality and Lorentz invariance
Download
index.pdf
Date
1998-01-01
Author
Deser, Stanley
Sarıoğlu, Bahtiyar Özgür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
259
views
81
downloads
Cite This
In (3+1) Hamiltonian form, the conditions for the electric/magnetic invariance of generic self-interacting gauge vector actions and the definition of the duality generator are obvious. Instead, (3+1) actions are not intrinsically Lorentz invariant. Imposing the Dirac–Schwinger stress tensor commutator requirement to enforce the latter yields a differential constraint on the Hamiltonian which translates into the usual Lagrangian form of the duality invariance condition obeyed by Maxwell and Born-Infeld theories. We also discuss covariance properties of some analogous scalar models.
Subject Keywords
Nuclear and High Energy Physics
URI
https://hdl.handle.net/11511/34411
Journal
Physics Letters B
DOI
https://doi.org/10.1016/s0370-2693(98)00163-4
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Sigma(Q)Lambda(Q)pi coupling constant in light cone QCD sum rules
Azizi, K.; Bayar, M.; Özpineci, Altuğ (American Physical Society (APS), 2009-03-01)
The strong coupling constants g(Sigma Q)Lambda(Q)pi (Q=b and c) are studied in the framework of the light cone QCD sum rules using the most general form of the baryonic currents. The predicted coupling constants are used to estimate the decay widths for the Sigma(Q)->Lambda(Q)pi decays which are compared with the predictions of the other approaches and existing experimental data.
Pseudospin and spin symmetry in Dirac-Morse problem with a tensor potential
AYDOĞDU, OKTAY; Sever, Ramazan (Elsevier BV, 2011-09-14)
Under the conditions of the pseudospin and spin symmetry, approximate analytical solutions of the Dirac-Morse problem with Coulomb-like tensor potential are presented. The energy eigenvalue equations are found and corresponding radial wave functions are obtained in terms of confluent hypergeometric functions. The energy eigenvalues are calculated numerically in the absence and presence of the tensor potential. We also investigate the contribution of the potential parameters to the energy splitting of the ps...
Spontaneous symmetry breaking at two loop in 3-d massless scalar electrodynamics
Tan, PN; Tekin, Bayram; Hosotani, Y (Elsevier BV, 1996-11-21)
In three-dimensional Maxwell-Chem-Simons massless scalar electrodynamics with phi(6) coupling, the U(1) symmetry is spontaneously broken at two loop order regardless of the presence or absence of the Maxwell term. Dimensional transmutation takes place in pure Chem-Simons scalar electrodynamics. The beta function for the phi(6) coupling is independent of gauge couplings.
Scalar form factor of the nucleon and nucleon-scalar meson coupling constant in QCD
Alıyev, Tahmasıb; Savcı, Mustafa (American Physical Society (APS), 2007-02-01)
Scalar form factor of the nucleon is calculated in the framework of light-cone QCD sum rules, using the most general form of the baryon current. Using the result on scalar form factor of the nucleon, the nucleon-scalar sigma and a(0) meson coupling constants are estimated. Our results on these couplings are in good agreement with the prediction of the external-field QCD sum rules method.
Noncommutative nonlinear sigma models and integrability
Kürkcüoğlu, Seçkin (American Physical Society (APS), 2008-09-01)
We first review the result that the noncommutative principal chiral model has an infinite tower of conserved currents and discuss the special case of the noncommutative CP1 model in some detail. Next, we focus our attention to a submodel of the CP1 model in the noncommutative spacetime A(theta)(R2+1). By extending a generalized zero-curvature representation to A(theta)(R2+1) we discuss its integrability and construct its infinitely many conserved currents. A supersymmetric principal chiral model with and wi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Deser and B. Ö. Sarıoğlu, “Hamiltonian electric/magnetic duality and Lorentz invariance,”
Physics Letters B
, pp. 369–372, 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34411.