Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Raman frequencies calculated as functions of temperature and pressure using volume data for solid phase I of benzene
Date
2017-01-01
Author
Yurtseven, Hasan Hamit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
61
views
0
downloads
Cite This
Raman frequencies of six lattice modes are calculated as a function of pressure using the volume data from the literature by means of the isothermal mode Gruneisen parameter (gamma(T)) for the solid phase I of benzene. We find that by determining the yr decreasing, the Raman frequencies calculated for the phonon modes increase with increasing pressure in this solid phase of benzene, which agree with the observed Raman data. We also predict the T-P phase diagram between the solid phases of I and I' by using the calculated Raman frequencies of the six lattice modes of benzene. Our calculated T-P diagram does not match properly with the observed data, which needs to be reconsidered by analyzing a number of measurements for the I - I' transition in benzene.
Subject Keywords
Raman frequency
,
Mode gruneisen parameter
,
I-I' transition; Solid benzene I
URI
https://hdl.handle.net/11511/34433
Journal
OPTIK
DOI
https://doi.org/10.1016/j.ijleo.2017.06.092
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Raman frequency shifts calculated from the volume data in naphthalene
Ozdemir, H.; Yurtseven, Hasan Hamit (2015-06-15)
The Raman frequencies for modes of symmetry Ag and Bg are calculated as functions of temperature (at atmospheric pressure) and pressure (at room temperature) using the observed volume data from the literature through the mode Gruneisen parameters in naphthalene. By determining the temperature and pressure dependence of the isobaric (gamma(P)) and isothermal (gamma(T)) mode Gruneisen parameters, respectively, the Raman frequencies of the modes which were calculated, are in good agreement with the observed fr...
Raman Frequencies Calculated at Various Pressures in Phase I of Benzene
Tari, Ozlem; Yurtseven, Hasan Hamit (2013-04-01)
We calculate in this study the pressure dependence of the frequencies for the Raman modes of A (A(g)), B (A(g), B-2g) and C (B-1g, B-3g) at constant temperatures of 274 and 294K (room temperature) for the solid phase I of benzene. Using the mode Gruneisen parameter of each lattice mode, which correlates the pressure dependence of the crystal volume and the frequency, the Raman frequencies of those modes are computed for phase I of benzene. Our results show that the Raman frequencies of the three lattice mod...
Calculation of the Raman and IR frequencies from the volume data at high pressures in N-2
AKAY, ÖZGE; Yurtseven, Hasan Hamit (2018-01-01)
Raman and IR frequencies of N-2 in the molecular state are calculated as a function of pressure up to 160 GPa by using the volume data from the literature through the mode Gruneisen parameter. By determining the Gruneisen parameters for the lattice modes and vibrons which decrease mostly with increasing pressure from the observed frequency (Raman, IR) and volume data, the Raman and IR frequencies of those modes are calculated at various pressure at room and low temperatures. We find that the Raman and IR fr...
Calculation of the Raman frequencies as a function of temperature in phase I of benzene
Tari, O.; Yurtseven, Hasan Hamit (2013-06-01)
This study gives our calculation of the Raman frequencies of the lattice modes A (A(1g)), B (A(g)B(2g)) and C (B1gB3g) as a function of temperature at constant pressures of 0, 1.4 and 3.05 GPa for the solid phase I of benzene. The Raman frequencies of those lattice modes are calculated using the volume data from the literature through the mode Gruneisen parameters for the solid phase I of this molecular crystal. It is shown here that the Raman frequencies of the lattice modes studied decrease with increasin...
Pressure dependence of the Raman frequency calculated from the volume data close to the ferroelectric-paraelectric transition in PbTiO3
Yurtseven, Hasan Hamit (2017-01-01)
We calculate the pressure dependence of the Raman frequencies of some Raman modes by using the observed volume data through the mode Gruneisen parameters for the ferroelectri-paraelectric transition in PbTiO3. The mode Gruneisen parameters which we have determined using the observed Raman frequencies for the soft modes, increase considerably with increasing pressure toward the transition pressure (PC similar to 11 GPa) from the tetragonal (ferroelectric) to the cubic (paraelectric) phase in PbTiO3. Variatio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. H. Yurtseven, “Raman frequencies calculated as functions of temperature and pressure using volume data for solid phase I of benzene,”
OPTIK
, pp. 224–231, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34433.