Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Word Embedding Based Event Detection on Social Media
Date
2017-06-23
Author
Ertugrul, Ali Mert
Velioglu, Burak
Karagöz, Pınar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
316
views
0
downloads
Cite This
Event detection from social media messages is conventionally based on clustering the message contents. The most basic approach is representing messages in terms of term vectors that are constructed through traditional natural language processing (NLP) methods and then assigning weights to terms generally based on frequency. In this study, we use neural feature extraction approach and explore the performance of event detection under the use of word embeddings. Using a corpus of a set of tweets, message terms are embedded to continuous space. Message contents that are represented as vectors of word embedding are grouped by using hierarchical clustering. The technique is applied on a set of Twitter messages posted in Turkish. Experimental results show that automatically extracted features detect the contextual similarities between tweets better than traditional feature extraction with term frequency-inverse document frequency (TF-IDF) based term vectors.
Subject Keywords
Event detection
,
Neural feature extraction
,
Word embedding
,
Neural probabilistic language models
URI
https://hdl.handle.net/11511/34492
DOI
https://doi.org/10.1007/978-3-319-59650-1_1
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Semantic Expansion of Tweet Contents for Enhanced Event Detection in Twitter
Ozdikis, Ozer; Karagöz, Pınar; Oğuztüzün, Mehmet Halit S. (2012-08-29)
This paper aims to enhance event detection methods in a micro-blogging platform, namely Twitter. The enhancement technique we propose is based on lexico-semantic expansion of tweet contents while applying document similarity and clustering algorithms. Considering the length limitations and idiosyncratic spelling in Twitter environment, it is possible to take advantage of word similarities and to enrich texts with similar words. The semantic expansion technique we implement is based on syntagmatic and paradi...
Event Detection via Tracking the Change in Community Structure and Communication Trends
Aktunc, Riza; Karagöz, Pınar; Toroslu, Ismail Hakki (2022-01-01)
Event detection is a popular research problem aiming to detect events from various data sources, such as news texts, social media postings or social interaction patterns. In this work, event detection is studied on social interaction and communication data via tracking changes in community structure and communication trends. With this aim, various community structure and communication trend based event detection methods are proposed. Additionally, a new strategy called community size range based change trac...
Semantic Expansion of Hashtags for Enhanced Event Detection in Twitter
Özdikiş, Özer; Karagöz, Pınar; Oğuztüzün, Mehmet Halit Seyfullah (2012-09-09)
In this work, we present an event detection method in Twitter based on clustering of hashtags and introduce an enhancement technique by using the semantic similarities between the hashtags. To this aim, we devised two methods for tweet vector generation and evaluated their effect on clustering and event detection performance in comparison to word-based vector generation methods. By analyzing the contexts of hashtags and their co-occurrence statistics with other words, we identify their paradigmatic relation...
Event Detection by Change Tracking on Community Structure of Temporal Networks
Aktunc, Riza; Toroslu, İsmail Hakkı; Karagöz, Pınar (2018-08-31)
Event detection is a popular research problem, aiming to detect events from online data sources with least possible delay. Most of the previous work focus on analyzing textual content such as social media postings to detect happenings. In this work, we consider event detection as a change detection problem in network structure, and propose a method that detects change in community structure extracted from communication network. We study three versions of the method based on different change models. Experime...
Event detection via tracking the change in community structure, communication trends, and graph embeddings
Aktunç, Rıza; Karagöz, Pınar; Toroslu, İsmail Hakkı; Department of Computer Engineering (2022-11-4)
Event detection is a popular research problem aiming to detect events from various data sources, such as climate records, traffic data, news texts, social media postings or social interaction patterns. In this work, event detection is studied on social interaction and communication data via tracking changes in community structure, communication trends, and graph embeddings. With this aim, various community structure, communication trend, and graph embedding based event detection methods are proposed. Additi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. M. Ertugrul, B. Velioglu, and P. Karagöz, “Word Embedding Based Event Detection on Social Media,” 2017, vol. 10334, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34492.