Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Lorentz force electrical impedance tomography using magnetic field measurements
Date
2016-08-21
Author
ZENGİN, Reyhan
Gençer, Nevzat Güneri
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
213
views
0
downloads
Cite This
In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -25 degrees to 25 degrees at intervals of 5 degrees. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies based on the sensitivity matrix analysis reveal that perturbations with 5 mm x 5 mm size can be detected up to a 3.5 cm depth.
Subject Keywords
Radiological and Ultrasound Technology
,
Radiology Nuclear Medicine and imaging
URI
https://hdl.handle.net/11511/34558
Journal
PHYSICS IN MEDICINE AND BIOLOGY
DOI
https://doi.org/10.1088/0031-9155/61/16/5887
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Experimental results for 2D magnetic resonance electrical impedance tomography (MR-EIT) using magnetic flux density in one direction
Birgul, O; Eyüboğlu, Behçet Murat; Ider, YZ (IOP Publishing, 2003-11-07)
Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Middle East Technical University MRI system. The dc current method used in magnetic resonance current density imaging...
ESTIMATION OF TISSUE RESISTIVITIES FROM MULTIPLE-ELECTRODE IMPEDANCE MEASUREMENTS
Eyüboğlu, Behçet Murat; WOLF, PD (IOP Publishing, 1994-01-01)
In order to measure in vivo resistivity of tissues in the thorax, the possibility of combining anatomical data extracted from high-resolution images with multiple-electrode impedance measurements, a priori knowledge of the range of tissue resistivities, and a priori data on the instrumentation noise is assessed in this study. A statistically constrained minimum-mean-square error estimator (MIMSEE) that minimizes the effects of linearization errors and instrumentation noise is developed and compared to the c...
Use of a priori information in estimating tissue resistivities - a simulation study
Baysal, U; Eyüboğlu, Behçet Murat (IOP Publishing, 1998-12-01)
Accurate estimation of tissue resistivities in vivo is needed to construct reliable human body volume conductor models in solving forward and inverse bioelectric field problems. The necessary data for the estimation can be obtained by using ht four-electrode impedance measurement technique, usually employed in electrical impedance tomography. In this study, a priori geometrical information with statistical properties of regional resistivities and linearization error as well as instrumentation noise has been...
Forward problem solution of electromagnetic source imaging using a new BEM formulation with high-order elements
Gençer, Nevzat Güneri (IOP Publishing, 1999-09-01)
Representations of the active cell populations on the cortical surface via electric and magnetic measurements are known as electromagnetic source images (EMSIs) of the human brain. Numerical solution of the potential and magnetic fields for a given electrical source distribution in the human brain is an essential part of electromagnetic source imaging. In this study, the performance of the boundary element method (BEM) is explored with different surface element types. A new BEM formulation is derived that m...
Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns
Birgul, O; Eyüboğlu, Behçet Murat; Ider, YZ (IOP Publishing, 2003-03-07)
Conventional injected-current electrical impedance tomography (EIT) and magnetic resonance imaging (MRI) techniques can be combined to reconstruct high resolution true conductivity images. The magnetic flux density distribution generated by the internal current density distribution is extracted from MR phase images. This information is used to form a fine detailed conductivity image using an Ohm's law based update equation. The reconstructed conductivity image is assumed to differ from the true image by a s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. ZENGİN and N. G. Gençer, “Lorentz force electrical impedance tomography using magnetic field measurements,”
PHYSICS IN MEDICINE AND BIOLOGY
, pp. 5887–5905, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34558.