Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
DRBEM and DQM solutions of natural convection flow in a cavity under a magnetic field
Date
2013-01-01
Author
Alsoy-Akgun, N.
Tezer, Münevver
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
5
views
0
downloads
The dual reciprocity boundary element method (DRBEM) and the differential quadrature method (DQM) are applied to solve the 2D, unsteady natural convection flow in enclosures under an externally applied magnetic field. Vorticity transport and energy equations are transformed to modified Helmholtz equations by utilising forward difference with relaxation parameters for the time derivatives, and approximating also Laplacian terms at two consecutive time levels. Thus, the need of another time integration scheme and very small time increment is eliminated. Inhomogeneities in modified Helmholtz equations are approximated with two types of radial basis functions. Solutions are obtained with both DRBEM and DQM for Ra and Ha values up to 10(6) and 300; respectively, and compared. DRBEM and DQM give almost the same accuracy, but DQM uses considerably small number of grid points resulting with less computational work.
Subject Keywords
Condensed Matter Physics
,
Computer Science Applications
URI
https://hdl.handle.net/11511/34834
Journal
PROGRESS IN COMPUTATIONAL FLUID DYNAMICS
DOI
https://doi.org/10.1504/pcfd.2013.055056
Collections
Department of Mathematics, Article