Extension of Lorenz Unpredictability

Download
2015-09-01
It is found that Lorenz systems can be unidirectionally coupled such that the chaos expands from the drive system. This is true if the response system is not chaotic, but admits a global attractor, an equilibrium or a cycle. The extension of sensitivity and period-doubling cascade are theoretically proved, and the appearance of cyclic chaos as well as intermittency in interconnected Lorenz systems are demonstrated. A possible connection of our results with the global weather unpredictability is provided.
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS

Suggestions

Persistence of Li-Yorke chaos in systems with relay
Akhmet, Marat; Kashkynbayev, Ardak (University of Szeged, 2017-01-01)
It is rigorously proved that the chaotic dynamics of the non-smooth system with relay function is persistent even if a chaotic perturbation is applied. We consider chaos in a modified Li-Yorke sense such that there are infinitely many almost periodic motions embedded in the chaotic attractor. It is demonstrated that the system under investigation possesses countable infinity of chaotic sets of solutions. An example that supports the theoretical results is represented. Moreover, a chaos control procedure bas...
Extension of spatiotemporal chaos in glow discharge-semiconductor systems
Akhmet, Marat; Rafatov, İsmail (2014-12-01)
Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528-4535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit e...
A Control System Architecture for Control of Non-Affine in Control, Open-Loop Unstable Underactuated Systems
Marangoz, Alp; Kutay, Ali Türker (2017-07-25)
In this paper, a control system architecture for control of non-affine in control, open-loop unstable underactuated system is discussed. Passivization of the unactuated (internal) system dynamics achieved through perturbation of trajectories of the actuated states, which are calculated through adaptive dynamic inversion technique, based on Tikhonov's theorem. Performance of the controller is shown through simulation of two open-loop unstable and locally uncontrollable example problems.
VERIFICATION BY CONSECUTIVE PROJECTIONS
HAGHVERDI, E; INAN, K (1993-01-01)
A new complexity relief technique for verifying formal specifications based on finite state machines is described. The method uses a Hoare's CSP-like nondeterministic semantics instead of the more commonly used observational equivalence and thus offers greater simplification without an essential loss of information. The approach is based on two algebraic operators on processes that perform parallel composition and process projection. It is shown that under appropriate conditions the complexity raising opera...
A density functional theory study on the structural and electronic properties of PbxSbySez (x plus y plus z=2, 3) clusters
Pekoz, Rengin; Erkoç, Şakir (2018-01-30)
The structural and electronic properties of neutral ternary PbxSbySez clusters (x y + z = 2, 3) in their ground states have been explored by means of density functional theory calculations. The geometric structures and binding energies are systematically explored and for the most stable configurations of each cluster type vibrational frequencies, charges on atoms, energy difference between highest occupied and lowest unoccupied molecular orbitals, and the possible dissociations channels have been analyzed. ...
Citation Formats
M. Akhmet, “Extension of Lorenz Unpredictability,” INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, pp. 0–0, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35043.