Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Learning Smooth Pattern Transformation Manifolds
Download
index.pdf
Date
2013-04-01
Author
Vural, Elif
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
242
views
99
downloads
Cite This
Manifold models provide low-dimensional representations that are useful for processing and analyzing data in a transformation-invariant way. In this paper, we study the problem of learning smooth pattern transformation manifolds from image sets that represent observations of geometrically transformed signals. To construct a manifold, we build a representative pattern whose transformations accurately fit various input images. We examine two objectives of the manifold-building problem, namely, approximation and classification. For the approximation problem, we propose a greedy method that constructs a representative pattern by selecting analytic atoms from a continuous dictionary manifold. We present a dc optimization scheme that is applicable to a wide range of transformation and dictionary models, and demonstrate its application to the transformation manifolds generated by the rotation, translation, and anisotropic scaling of a reference pattern. Then, we generalize this approach to a setting with multiple transformation manifolds, where each manifold represents a different class of signals. We present an iterative multiple-manifold-building algorithm such that the classification accuracy is promoted in the learning of the representative patterns. The experimental results suggest that the proposed methods yield high accuracy in the approximation and classification of data compared with some reference methods, while the invariance to geometric transformations is achieved because of the transformation manifold model.
Subject Keywords
Manifold learning
,
Pattern transformation manifolds
,
Pattern classification
,
Transformation-invariance
,
Sparse approximations
URI
https://hdl.handle.net/11511/35066
Journal
IEEE TRANSACTIONS ON IMAGE PROCESSING
DOI
https://doi.org/10.1109/tip.2012.2227768
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Learning pattern transformation manifolds for classification
Vural, Elif (2013-02-21)
Manifold models provide low-dimensional representations that are useful for analyzing and classifying data in a transformation-invariant way. In this paper we study the problem of jointly building multiple pattern transformation manifolds from a collection of image sets, where each set consists of observations from a class of geometrically transformed signals. We build the manifolds such that each manifold approximates a different signal class. Each manifold is characterized by a representative pattern that...
Distance-based discretization of parametric signal manifolds
Vural, Elif (2010-06-28)
The characterization of signals and images in manifolds often lead to efficient dimensionality reduction algorithms based on manifold distance computation for analysis or classification tasks. We propose in this paper a method for the discretization of signal manifolds given in a parametric form. We present an iterative algorithm for the selection of samples on the manifold that permits to minimize the average error in the manifold distance computation. Experimental results with image appearance manifolds d...
Approximation of pattern transformation manifolds with parametric dictionaries
Vural, Elif (2011-07-12)
The construction of low-dimensional models explaining high-dimensional signal observations provides concise and efficient data representations. In this paper, we focus on pattern transformation manifold models generated by in-plane geometric transformations of 2D visual patterns. We propose a method for computing a manifold by building a representative pattern such that its transformation manifold accurately fits a set of given observations. We present a solution for the progressive construction of the repr...
Out-of-Sample Generalizations for Supervised Manifold Learning for Classification
Vural, Elif (2016-03-01)
Supervised manifold learning methods for data classification map high-dimensional data samples to a lower dimensional domain in a structure-preserving way while increasing the separation between different classes. Most manifold learning methods compute the embedding only of the initially available data; however, the generalization of the embedding to novel points, i.e., the out-of-sample extension problem, becomes especially important in classification applications. In this paper, we propose a semi-supervis...
Learning semi-supervised nonlinear embeddings for domain-adaptive pattern recognition
Vural, Elif (null; 2019-05-20)
We study the problem of learning nonlinear data embeddings in order to obtain representations for efficient and domain-invariant recognition of visual patterns. Given observations of a training set of patterns from different classes in two different domains, we propose a method to learn a nonlinear mapping of the data samples from different domains into a common domain. The nonlinear mapping is learnt such that the class means of different domains are mapped to nearby points in the common domain in order to...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Vural, “Learning Smooth Pattern Transformation Manifolds,”
IEEE TRANSACTIONS ON IMAGE PROCESSING
, pp. 1311–1325, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35066.