Linear codes from weakly regular plateaued functions and their secret sharing schemes

Mesnager, Sihem
Özbudak, Ferruh
Sinak, Ahmet
Linear codes, the most significant class of codes in coding theory, have diverse applications in secret sharing schemes, authentication codes, communication, data storage devices and consumer electronics. The main objectives of this paper are twofold: to construct three-weight linear codes from plateaued functions over finite fields, and to analyze the constructed linear codes for secret sharing schemes. To do this, we generalize the recent contribution of Mesnager given in (Cryptogr Commun 9(1):71-84, 2017). We first introduce the notion of (non)-weakly regular plateaued functions over Fp, with p being an odd prime. We next construct three-weight linear p-ary (resp. binary) codes from weakly regular p-ary plateaued (resp. Boolean plateaued) functions and determine their weight distributions. We finally observe that the constructed linear codes are minimal for almost all cases, which implies that they can be directly used to construct secret sharing schemes with nice access structures. To the best of our knowledge, the construction of linear codes from plateaued functions over Fp, with p being an odd prime, is studied in this paper for the first time in the literature.


Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes
Lopez-Permouth, Sergio R.; Ozadam, Hakan; Özbudak, Ferruh; SZABO, Steve (2013-01-01)
Cyclic, negacyclic and constacyclic codes are part of a larger class of codes called polycyclic codes; namely, those codes which can be viewed as ideals of a factor ring of a polynomial ring. The structure of the ambient ring of polycyclic codes over GR(p(a), m) and generating sets for its ideals are considered. It is shown that these generating sets are strong Groebner bases. A method for finding such sets in the case that a = 2 is given. This explicitly gives the Hamming distance of all cyclic codes of le...
Minimum order linear system identification and parameter estimation with application
Erdoğan, Onur Cem; Balkan, Raif Tuna; Platin, Bülent Emre; Department of Mechanical Engineering (2014)
Design, control, and investigation of complex systems require a tool to understand and model system behavior. This tool is the system identification, which convert the system response to a mathematical formulation. During the identification phase, the utilized model is important to convey system behavior. In this study, a number of minimum order and non-parametric system identification algorithms are implemented for the identification of linear time invariant mechanical systems. For this purpose, impulse re...
Belief propagation decoding of polar codes under factor graph permutations
Peker, Ahmet Gökhan; Yücel, Melek Diker; Department of Electrical and Electronics Engineering (2018)
Polar codes, introduced by Arıkan, are linear block codes that can achieve the capacity of symmetric binary-input discrete memoryless channels with low encoding and decoding complexity. Polar codes of block length N are constructed by channel polarization method, which consists of channel combining and splitting operations to obtain N polarized subchannels from N copies of binary-input discrete memoryless channels. As N grows, symmetric channel capacities of the polarized subchannels converge to either 0 or...
Distributed Content Based Video Identification in Peer-to-Peer Networks: Requirements and Solutions
Koz, Alper; Lagendijk, R. (Inald) L. (2017-03-01)
In this paper, we first discuss the essential requirements for a fingerprint (perceptual hash)-based distributed video identification system in peer-to-peer (P2P) networks in comparison with traditional central database implementations of fingerprints. This discussion reveals that first, fingerprint sizes of existing video fingerprint methods are not compatible with the cache sizes of current P2P clients; second, fingerprint extraction durations during a query are not at tolerable levels for a user in the n...
Demir, Özlem Tuğfe; Tuncer, Temel Engin (2015-09-04)
In this paper, simultaneous wireless information and power transfer (SWIPT) concept is introduced for multi group multicast beamforming. Each user has a single antenna and a power splitter which divides the radio frequency (RF) signal into two for both information decoding and energy harvesting. The aim is to minimize the total transmission power at the base station while satisfying both signal-to-interference-plus- noise-ratio (SINR) and harvested power constraints at each user. Unlike unicast and certain ...
Citation Formats
S. Mesnager, F. Özbudak, and A. Sinak, “Linear codes from weakly regular plateaued functions and their secret sharing schemes,” DESIGNS CODES AND CRYPTOGRAPHY, pp. 463–480, 2019, Accessed: 00, 2020. [Online]. Available: