Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Graphene-enabled electrically controlled terahertz spatial light modulators
Download
index.pdf
Date
2015-05-01
Author
Kakenov, Nurbek
Takan, Taylan
ÖZKAN, VEDAT ALİ
Balci, Osman
Polat, Emre O.
Altan, Hakan
KOCABAŞ, COŞKUN
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
247
views
0
downloads
Cite This
In this Letter, we demonstrate a broadband terahertz (THz) spatial light modulator using 5 x 5 arrays of large area graphene supercapacitors. Our approach relies on controlling spatial charge distribution on a passive matrix array of patterned graphene electrodes. By changing the voltage bias applied to the rows and columns, we were able to pattern the THz transmittance through the device with high modulation depth and low operation voltage. We anticipate that the simplicity of the device architecture with high contrast THz modulation over a broad spectral range could provide new tools for THz imaging and communication systems. (C) 2015 Optical Society of America
Subject Keywords
Nanomaterials
,
Terahertz imaging
,
Modulators
,
Optoelectronics
URI
https://hdl.handle.net/11511/35130
Journal
OPTICS LETTERS
DOI
https://doi.org/10.1364/ol.40.001984
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Broadband THz Modulators Based on Multilayer Graphene on PVC
KAYA, Emine; Kakenov, Nurbek; Kocabas, Coskun; Altan, Hakan; Esentürk, Okan (2016-09-30)
In this study we present the direct terahertz timedomain spectroscopic measurement of CVD-grown multilayer graphene (MLG) on PVC substrate with an electrically tunable Fermi level. In a configuration consisting MLG and injected organic dopant, the transmitted intensity loss of terahertz radiation was observed with an applied voltage between 0 and 3.5 V.We showed that MLG on PVC devices provided approximately 100 % modulation between 0.2 and 1.5 THz at preferentially low operation voltage of ca. 3V. The obse...
Performance Evaluation and Selection of PWM Switching and Control Methods for Grid Connected Modular Multilevel Converters
Ciftci, Baris; Hava, Ahmet Masum (2015-09-24)
This paper focuses on the determination of suitable carrier based pulse width modulation (PWM) switching and control methods for grid connected modular multilevel converters (MMCs). Characterization of various level-shifted and phase-shifted carrier based PWM methods are provided in terms of output voltage waveforms both for N+1 and 2N+1 level output phase voltages. Carrier based PWM method based control approaches are evaluated for MMC. Performances of different control methods are evaluated and compared f...
Applications in broadband THz spectroscopy towards material studies
Türkşen, Zeynep; Altan, Hakan; Department of Physics (2011)
The purpose of this work was to construct and analyze a THz time domain spectroscopy (THz-TDS) system by using a nanojoule energy per pulse ultrafast laser (non-amplified ultrafast laser or oscillator) source and a non-linear optical generation method for THz generation. First a THz-TDS system, which uses photoconductive antenna (PCA) method for THz generation, was built to understand the working principles of these types of systems. This THz-TDS system which used PCA for generation and a 2mm thick <110> Zn...
Plasmonic-photonic arrays with aperiodic spiral order for ultra-thin film solar cells
Trevino, Jacob; Forestiere, Carlo; Dİ MARTİNO, Giuliana; Yerci, Selçuk; Priolo, Francesco; Dal Negro, Luca (2012-05-07)
We report on the design, fabrication and measurement of ultrathin film Silicon On Insulator (SOI) Schottky photo-detector cells with nanostructured plasmonic arrays, demonstrating broadband enhanced photocurrent generation using aperiodic golden angle spiral geometry. Both golden angle spiral and periodic arrays of various center-to-center particle spacing were investigated to optimize the photocurrent enhancement. The primary photocurrent enhancement region is designed for the spectral range 600nm-950nm, w...
Quantum emitter interacting with graphene coating in the strong-coupling regime
Gunay, Mehmet; Karanikolas, Vasilios; ŞAHİN, RAMAZAN; Ovali, Rasim Volga; Bek, Alpan; TAŞGIN, MEHMET EMRE (2020-04-14)
We demonstrate the strong coupling of a quantum dot and a graphene spherical shell coating it. Our simulations are based on solutions of three-dimensional Maxwell equations, using a boundary element method approach. Interaction between the nanostructures produces sharp hybrid modes, even when the two are off-resonant. The coupling of the light to these "very sharp" plexcitonic resonances is an order of magnitude larger than its coupling to a quantum dot, and they are voltage tunable (continuously) in an 80-...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Kakenov et al., “Graphene-enabled electrically controlled terahertz spatial light modulators,”
OPTICS LETTERS
, pp. 1984–1987, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35130.