Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A particle swarm optimization approach for hexahedral mesh smoothing
Date
2009-05-10
Author
Yilmaz, A. Egemen
Kuzuoğlu, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
208
views
0
downloads
Cite This
There are some approaches for all-hexahedral mesh quality improvement by means of node-movement while preserving the connectivity. Among these methods, the most easily implemented and well known one is the Laplacian smoothing method; however, for this method mesh quality improvement is not guaranteed in all cases, and this approach might cause inverted elements especially in concave regions. In this work, a method for the improvement of hexahedral mesh shape-quality Without causing inverted elements is proposed; which is based on optimization of an objective function calculated by means of the individual qualities of hexahedral elements in the mesh. The shape-quality for each hexahedral element is defined via the condition number of the relevant element. The numerical optimization scheme is the particle swarm optimization method, which originated from observations related to the social behaviors of bird, insect, or fish colonies. The purpose of this paper is to discuss the applicability of this approach to mesh smoothing. Some examples are given in order to demonstrate the applicability. Copyright (C) 2008 John Wiley & Sons, Ltd.
Subject Keywords
Mechanical Engineering
,
Mechanics of Materials
,
Applied Mathematics
,
Computational Mechanics
,
Computer Science Applications
URI
https://hdl.handle.net/11511/35277
Journal
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
DOI
https://doi.org/10.1002/fld.1878
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A projection based variational multiscale method for a fluid–fluid interaction problem
Ağgül, Mustafa ; Eroğlu, Fatma Güler ; Kaya Merdan, Songül; Labovsky, Alexer E. (Elsevier BV, 2020-06-15)
The proposed method aims to approximate a solution of a fluid–fluid interaction problem in case of low viscosities. The nonlinear interface condition on the joint boundary allows for this problem to be viewed as a simplified version of the atmosphere–ocean coupling. Thus, the proposed method should be viewed as potentially applicable to air–sea coupled flows in turbulent regime. The method consists of two key ingredients. The geometric averaging approach is used for efficient and stable decoupling of the pr...
An adaptive fully discontinuous Galerkin level set method for incompressible multiphase flows
KARAKUS, Ali; WARBURTON, Tim; AKSEL, MEHMET HALUK; Sert, Cüneyt (Emerald, 2018-01-01)
Purpose This study aims to focus on the development of a high-order discontinuous Galerkin method for the solution of unsteady, incompressible, multiphase flows with level set interface formulation.
A modular regularized variational multiscale proper orthogonal decomposition for incompressible flows
Eroglu, Fatma G.; Kaya Merdan, Songül; Rebholz, Leo G. (Elsevier BV, 2017-10-01)
In this paper, we propose, analyze and test a post-processing implementation of a projection-based variational multiscale (VMS) method with proper orthogonal decomposition (POD) for the incompressible Navier-Stokes equations. The projection-based VMS stabilization is added as a separate post-processing step to the standard POD approximation, and since the stabilization step is completely decoupled, the method can easily be incorporated into existing codes, and stabilization parameters can be tuned independe...
The DRBEM solution of incompressible MHD flow equations
Bozkaya, Nuray; Tezer, Münevver (Wiley, 2011-12-10)
This paper presents a dual reciprocity boundary element method (DRBEM) formulation coupled with an implicit backward difference time integration scheme for the solution of the incompressible magnetohydrodynamic (MHD) flow equations. The governing equations are the coupled system of Navier-Stokes equations and Maxwell's equations of electromagnetics through Ohm's law. We are concerned with a stream function-vorticity-magnetic induction-current density formulation of the full MHD equations in 2D. The stream f...
A nested iterative scheme for computation of incompressible flows in long domains
Manguoğlu, Murat; Tezduyar, Tayfun E.; Sathe, Sunil (Springer Science and Business Media LLC, 2008-12-01)
We present an effective preconditioning technique for solving the nonsymmetric linear systems encountered in computation of incompressible flows in long domains. The application category we focus on is arterial fluid mechanics. These linear systems are solved using a nested iterative scheme with an outer Richardson scheme and an inner iteration that is handled via a Krylov subspace method. Test computations that demonstrate the robustness of our nested scheme are presented.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. E. Yilmaz and M. Kuzuoğlu, “A particle swarm optimization approach for hexahedral mesh smoothing,”
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
, pp. 55–78, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35277.