Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Structural Insights into Alternate Aggregated Prion Protein Forms
Date
2009-11-13
Author
POLANO, maurizio
Bek, Alpan
BENETTİ, federico
lazzarino, marco
LEGNAME, giuseppe
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
283
views
0
downloads
Cite This
The conversion of the cellular form of the prion protein (PrPC) to an abnormal, alternatively folded isoform (PrPSc) is the central event in prion diseases or transmissible spongiform encephalopathies. Recent studies have demonstrated de novo generation of murine prions from recombinant prion protein (recPrP) after inoculation into transgenic and wild-type mice. These so-called synthetic prions lead to novel prion diseases with unique neuropathological and biochemical features. Moreover, the use of recPrP in an amyloid seeding assay can specifically detect and amplify various strains of prions. We employed this assay in our experiments and analyzed in detail the morphology of aggregate structures produced under defined chemical constraints. Our results suggest that changes in the concentration of guanidine hydrochloride can lead to different kinetic traces in a typical thioflavin T(ThT) assay. Morphological and structural analysis of these aggregates by atomic force microscopy indicates a variation in the structure of the PrP molecular assemblies.
Subject Keywords
Molecular Biology
URI
https://hdl.handle.net/11511/35563
Journal
JOURNAL OF MOLECULAR BIOLOGY
DOI
https://doi.org/10.1016/j.jmb.2009.08.056
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Combinatorial Tau pseudophosphorylation: markedly different regulatory effects on microtubule assembly and dynamic instability than the sum of the individual parts.
Kiriş, Erkan; Sargin, ME; Gaylord, MR; Altinok, A; Rose, K; Manjunath, BS; Jordan, MA; Wilson, L; Feinstein, SC (American Society for Biochemistry & Molecular Biology (ASBMB), 2011-04-22)
Tau is a multiply phosphorylated protein that is essential for the development and maintenance of the nervous system. Errors in Tau action are associated with Alzheimer disease and related dementias. A huge literature has led to the widely held notion that aberrant Tau hyperphosphorylation is central to these disorders. Unfortunately, our mechanistic understanding of the functional effects of combinatorial Tau phosphorylation remains minimal. Here, we generated four singly pseudophosphorylated Tau proteins ...
The NF-kappa B target genes ICAM-1 and VCAM-1 are differentially regulated during spontaneous differentiation of Caco-2 cells
Astarci, Erhan; Sade, Asli; Cimen, Ismail; SAVAŞ, BERNA; Banerjee, Sreeparna (Wiley, 2012-08-01)
Intestinal epithelial differentiation entails the formation of highly specialized cells with specific absorptive, secretory, digestive and immune functions. Cellcell and cellmicroenvironment interactions appear to be crucial in determining the outcome of the differentiation process. Using the Caco-2 cell line, which undergoes spontaneous re-differentiation when grown past confluency, we observed a loss of VCAM-1 (vascular cell adhesion molecule 1) mRNA expression, while ICAM-1 (intercellular cell adhesion m...
Immunotherapeutic applications of CpG ODN
Gürsel, Mayda (2006-06-01)
Bacterial DNA and synthetic oligodeoxynucleotides (ODN) expressing unmethylated CpG motifs stimulate the mammalian immune system to mount a rapid innate immune response. This response is characterized by the production of polyreactive IgM, immunomodulatory cytokines and chemokines. CpG ODN directly stimulate lymphocytes, natural killer cells and professional antigen-presenting cells (such as macrophages and dendritic cells). Owing to the strength and nature of this stimulation, CpG ODN are being harnessed f...
Structural properties of an engineered outer membrane protein G mutant, OmpG-16SL, investigated with infrared spectroscopy
Yilmaz, Irem; Yildiz, Ozkan; KORKMAZ ÖZKAN, FİLİZ (Informa UK Limited, 2019-05-31)
The structural and functional differences between wild type (WT) outer membrane protein G and its two mutants are investigated with Fourier transform infrared spectroscopy. Both mutants have a long extension to the primary sequence to increase the number of beta-strands from 14 (wild type) to 16 in an attempt to enlarge the pore diameter. The comparison among proteins is made in terms of pH-dependent conformational changes and thermal stability. Results show that all proteins respond to pH change but at dif...
Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin.
Vasiljeva, L; Kim, M; Terzi Çizmecioğlu, Nihal; Soares, LM; Buratowski, S (Elsevier BV, 2008-02-15)
Within the heterochromatin of budding yeast, RNA polymerase II (RNAPII) transcription is repressed by the Sir2 deacetylase. Although heterochromatic silencing is generally thought to be due to limited accessibility of the underlying DNA, there are several reports of RNAPII and basal transcription factors within silenced regions. Analysis of the rDNA array revealed cryptic RNAPII transcription within the "non-transcribed" spacer region. These transcripts are terminated by the Nrd1 /Sen1 complex and degraded ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
m. POLANO, A. Bek, f. BENETTİ, m. lazzarino, and g. LEGNAME, “Structural Insights into Alternate Aggregated Prion Protein Forms,”
JOURNAL OF MOLECULAR BIOLOGY
, pp. 1033–1042, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35563.