Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
3D Path Planning for Multiple UAVs for Maximum Information Collection
Date
2014-01-01
Author
Ergezer, Halit
Leblebicioğlu, Mehmet Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
187
views
0
downloads
Cite This
This paper addresses the problem of path planning for multiple UAVs. The paths are planned to maximize collected amount of information from Desired Regions (DR) while avoiding Forbidden Regions (FR) violation and reaching the destination. The approach extends prior study for multiple UAVs by considering 3D environment constraints. The path planning problem is studied as an optimization problem. The problem has been solved by a Genetic Algorithm (GA) with the proposal of novel evolutionary operators. The initial populations have been generated from a seed-path for each UAV. The seed-paths have been obtained both by utilizing the Pattern Search method and solving the multiple-Traveling Salesman Problem (mTSP). Utilizing the mTSP solves both the visiting sequences of DRs and the assignment problem of "which DR should be visited by which UAV". It should be emphasized that all of the paths in population in any generation of the GA have been constructed using the dynamical mathematical model of an UAV equipped with the autopilot and guidance algorithms. Simulations are realized in the MATLAB/Simulink environment. The path planning algorithm has been tested with different scenarios, and the results are presented in Section 6. Although there are previous studies in this field, this paper focuses on maximizing the collected information instead of minimizing the total mission time. Even though, a direct comparison of our results with those in the literature is not possible, it has been observed that the proposed methodology generates satisfactory and intuitively expected solutions.
Subject Keywords
Control and Systems Engineering
,
Mechanical Engineering
,
Electrical and Electronic Engineering
,
Industrial and Manufacturing Engineering
,
Software
,
Artificial Intelligence
URI
https://hdl.handle.net/11511/35962
Journal
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
DOI
https://doi.org/10.1007/s10846-013-9895-6
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
3D Path Planning for UAVs for Maximum Information Collection
Ergezer, Halit; Leblebicioğlu, Mehmet Kemal (2013-01-01)
This paper addresses the problem of path planning for multiple UAVs. The paths are planned to maximize collected amount of information from Desired Regions (DR) while avoiding Forbidden Regions (FR) violation and reaching the destination. The approach extends prior study for multiple UAVs by considering 3D environment constraints. The path planning problem is studied as an optimization problem. The problem has been solved by a Genetic Algorithm (GA) with the proposal of novel evolutionary operators. The ini...
Multi-agent system-based fuzzy controller design with genetic tuning for a mobile manipulator robot in the hand over task
Erden, MS; Leblebicioğlu, Mehmet Kemal; Halıcı, Uğur (Springer Science and Business Media LLC, 2004-03-01)
This paper presents an application of the multi-agent system approach to a service mobile manipulator robot that interacts with a human during an object delivery and hand-over task in two dimensions. The base, elbow and shoulder of the robot are identified as three different agents, and are controlled using fuzzy control. The control variables of the controllers are linear velocity of the base, angular velocity of the elbow, and angular velocity of the shoulder. Main inputs to the system are the horizontal ...
Visual Result Prediction in Electromagnetic Simulations Using Machine Learning
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2019-11-01)
In this letter, we present a novel approach based on using convolutional neural networks (CNNs) to visually predict solutions of electromagnetic problems. CNN models are constructed and trained such that images of surface currents obtained at the early stages of an iterative solution can be used to predict images of the final (converged) solution. Numerical experiments demonstrate that the predicted images contain significantly better visual details than the corresponding input images. The developed approac...
Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence
Khalilpourazari, Soheyl; Khalilpourazary, Saman; ÇİFTÇİOĞLU, AYBİKE ÖZYÜKSEL; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2020-09-01)
This paper suggests a novel robust formulation designed for optimizing the parameters of the turning process in an uncertain environment for the first time. The aim is to achieve the lowest energy consumption and highest precision. With this aim, the current paper considers uncertain parameters, objective functions, and constraints in the offered mathematical model. We proposed several uncertain models and validated the results in real-world case studies. In addition, several artificial intelligence-based s...
Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics
Ergül, Özgür Salih (Institution of Engineering and Technology (IET), 2008-01-03)
A hierarchical parallelisation of the multilevel fast multipole algorithm (MLFMA) for the efficient solution of large-scale problems in computational electromagnetics is presented. The tree structure of MLFMA is distributed among the processors by partitioning both the clusters and the samples of the fields appropriately for each level. The parallelisation efficiency is significantly improved compared to previous approaches, where only the clusters or only the fields are partitioned in a level.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Ergezer and M. K. Leblebicioğlu, “3D Path Planning for Multiple UAVs for Maximum Information Collection,”
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
, pp. 737–762, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35962.