Novel antifoam for fermentation processes: Fluorocarbon-hydrocarbon hybrid unsymmetrical bolaform surfactant

2005-09-13
Çalık, Pınar
Erdinc, BI
Aydogan, N
Argun, M
As foaming appears as a problem in chemical and fermentation processes that inhibits reactor performance, the eminence of a novel fluorocarbon-hydrocarbon unsymmetrical bolaform (FHUB: OH(CH2)(11)N+(C2H4)(2)(CH2)(2)(CF2)(5)CF3 I-) surfactant as an antifoaming agent as well as a foam-reducing agent was investigated and compared with other surfactants and a commercial antifoaming agent. The surface elasticity of FHUB was determined as 4 mN/m, indicating its high potential on thinning of the foam film. The interactions between FHUB and the microoganism were investigated in a model fermentation process related with an enzyme production by recombinant Escherichia coli, in V = 3.0 dm(3) bioreactor systems with V-R = 1.65 dm3 working volume at air inlet rate of Q(o)/V-R = 0.5 dm(3) dm(-3) min(-1) and agitation rate of N = 500 min(-1) oxygen transfer conditions, at T = 37 degrees C, pH(o) = 7.2, and C-FHUB = 0 and 0.1 mM, in a glucose-based defined medium. As FHUB did not influence the metabolism, specific enzyme activity values obtained with and without FHUB were close to each other; however, because of the slight decrease in oxygen transfer coefficient, slightly lower volumetric enzyme activity and cell concentrations were obtained. However, when FHUB is compared with widely used silicon oil based Antifoam A, with the use of the FHUB, higher physical oxygen transfer coefficient (K(L)a) values are obtained. Moreover, as the amount required for the foam control is very low, minute changes in the working volume of the bioreactor were obtained indicating the high potential of the use of FHUB as an antifoaming agent as well as a foam-reducing agent.
LANGMUIR

Suggestions

In Situ Formed "Weakly Ligated/Labile Ligand" Iridium(0) Nanoparticles and Aggregates as Catalysts for the Complete Hydrogenation of Neat Benzene at Room Temperature and Mild Pressures
Bayram, Ercan; Zahmakiran, Mehmet; Özkar, Saim; Finke, Richard G. (American Chemical Society (ACS), 2010-07-20)
"Weakly ligated/labile ligand" nanoparticles, that is nanoparticles where only weakly coordinated ligands plus the desired catalytic reactants are present, are of fundamental interest. Described herein is a catalyst system for benzene hydrogenation to cyclohexane consisting of "weakly ligated/labile ligand" Ir(0) nanoparticles and aggregates plus dry-HCl formed formed in situ from commercially available [(1,5-COD)IrCl](2) plus 40 +/- 1 psig (similar to 2.7 atm) H(2) at 22 +/- 0.1 degrees C. Multiple control...
Novel conducting polymer electrolyte biosensor based on poly(1-vinyl imidazole) and poly(acrylic acid) networks
Arslan, A; Kiralp, S; Toppare, Levent Kamil; Bozkurt, A (American Chemical Society (ACS), 2006-03-14)
Biosensor construction and characterization studies of poly(acrylic acid) (PAA) and poly(1-vinyl imidazole) (PVI) complex systems have been carried out. The biosensors were prepared by mixing PAA with PVI at several stoichiometric ratios, x (molar ratio of the monomer repeat units). The enzyme, invertase, was entrapped in the PAA/PVA interpenetrating polymer networks during complexation. Modifications were made on the PAA/PVI conducting polymer electrolyte matrixes to improve the stability and performance o...
Amphoteric surface hydrogels derived from hydrogen-bonded multilayers: Reversible loading of dyes and macromolecules
Kharlampieva, Eugenia; Erel Göktepe, İrem; Sukhishvili, Svetlana A. (American Chemical Society (ACS), 2007-01-02)
We used hydrogen-bonded multilayers of poly(N-vinylpyrrolidone) (PVPON) and poly(methacrylic acid) (PMAA) as precursors for producing surface-bound hydrogels and studied their pH-dependent swelling and protein uptake behavior using in situ attenuated total reflection Fourier transform infrared spectroscopy and in situ ellipsometry. The hydrogels were produced by selective chemical cross-linking between PMAA units using carbodiimide chemistry and ethylenediamine (EDA) as a cross-linking reagent, followed by ...
Industrial Ziegler-Type Hydrogenation Catalysts Made from Co(neodecanoate)(2) or Ni(2-ethylhexanoate)(2) and AlEt3: Evidence for Nanoclusters and Sub-Nanocluster or Larger Ziegler-Nanocluster Based Catalysis
Alley, William M.; Hamdemir, Isil K.; Wang, Qi; Frenkel, Anatoly I.; Li, Long; Yang, Judith C.; Menard, Laurent D.; Nuzzo, Ralph G.; Özkar, Saim; Yih, Kuang-Hway; Johnson, Kimberly A.; Finke, Richard G. (American Chemical Society (ACS), 2011-05-17)
Ziegler-type hydrogenation catalysts are important for industrial processes, namely, the large-scale selective hydrogenation of styrenic block copolymers. Ziegler-type hydrogenation catalysts are composed of a group 8-10 transition metal precatalyst plus an alkylaluminum cocatalyst (and they are not the same as Ziegler-Natta polymerization catalysts). However, for similar to 50 years two unsettled issues central to Ziegler-type hydrogenation catalysis are the nature of the metal species present after cataly...
Conducting polymers of decanedioic acid bis-(4-pyrrol-1-yl-phenyl) ester
Çırpan, Ali; Toppare, Levent Kamil (Elsevier BV, 2004-05-15)
A dipyrrolyl monomer was synthesized via the reaction between 4-pyrrol-1-yl phenol and decanedioyl dichloride. The electrochemical behavior of this monomer was studied. Polymerization of decanedioic acid bis-(4-pyrrol-1-yi-phenyl) ester (DAPE) was achieved by chemical and constant current electrolyses methods. Copolymerization of DAPE with thiophene was performed by constant potential electrolysis in acetonitrile-tetrabutylammonium tetrafluoroborate (TBAFB), dichloromethane-TBAFB, solvent-electrolyte couple...
Citation Formats
P. Çalık, B. Erdinc, N. Aydogan, and M. Argun, “Novel antifoam for fermentation processes: Fluorocarbon-hydrocarbon hybrid unsymmetrical bolaform surfactant,” LANGMUIR, pp. 8613–8619, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36307.