Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Oblivious spatio-temporal watermarking of digital video by exploiting the human visual system
Date
2008-03-01
Author
Koz, Alper
Alatan, Abdullah Aydın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
161
views
0
downloads
Cite This
Imperceptibility requirement in video watermarking is more challenging compared with its image counterpart due to the additional dimension existing in video. The embedding system should not only yield spatially invisible watermarks for each frame of the video, but it should also take the temporal dimension into account in order to avoid any flicker distortion between frames. While some of the methods in the literature approach this problem by only allowing arbitrarily small modifications within frames in different transform domains, some others simply use implicit spatial properties of the human visual system (HVS), such as luminance masking, spatial masking, and contrast masking. In addition, some approaches exploit explicitly the spatial thresholds of HVS to determine the location and strength of the watermark. However, none of the former approaches have focused on guaranteeing temporal invisibility and achieving maximum watermark strength along the temporal direction. In this paper, temporal dimension is exploited for video watermarking by means of utilizing temporal sensitivity of the HVS. The proposed method utilizes the temporal contrast thresholds of HVS to determine the maximum strength of watermark, which still gives imperceptible distortion after watermark insertion. Compared with some recognized methods in the literature, the proposed method avoids the typical visual degradations in the watermarked video, while still giving much better robustness against common video distortions, such as additive Gaussian noise, video coding, frame rate conversions, and temporal shifts, in terms of bit error rate.
Subject Keywords
Human visual system (HVS)
,
Temporal contrast thresholds
,
Video watermarking
URI
https://hdl.handle.net/11511/36584
Journal
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
DOI
https://doi.org/10.1109/tcsvt.2008.918446
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Oblivious video watermaking using temporal sensitivity of HVS
Koz, A; Alatan, Abdullah Aydın (2004-04-30)
An oblivious video watermarking method is presented based on the temporal sensitivity of Human Visual System (HVS). The method exploits the temporal contrast thresholds of HVS to determine the maximum strength of watermark, which still gives imperceptible distortion after watermark insertion. Compared to other approaches in the literature, the method guarantees to avoid flickering problem in the watermarked video and gives better robustness results to video distortions, such as additive Gaussian noise, H.26...
UTILIZATION OF EVENT BASED CAMERAS FOR VIDEO FRAME INTERPOLATION
Kılıç, Onur Selim; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2022-8-25)
Video Frame Interpolation (VFI) aims to synthesize several frames in the middle of two adjacent original video frames. State-of-the-art frame interpolation techniques create intermediate frames by considering the objects' motions within the frames. However, these approaches adopt a first-order approximation that fails without information between the keyframes. Event cameras are new sensors that provide additional information in the dead time between frames. They measure per-pixel brightness changes asynchro...
Composite Method in Real Time Video Stabilization
Bayrak, Serhat; Ulusoy, İlkay (2009-01-01)
Since digital video stabilization completely performs over the images, if requires exhaustive processing power. Therefore, it is less preferred for real-time applications. Global (background) motion estimation in floating video is the most time consuming part of digital video stabilization. In this work, the load of digital motion estimation is reduced by using mechanical motion sensors, thus, it is shown that digital video stabilization can be used for real-time applications.
Intra prediction with 3-tap filters for lossless and lossy video coding
Ranjbar Alvar, Saeed; Kamışlı, Fatih; Department of Electrical and Electronics Engineering (2016)
Video coders are primarily designed for lossy compression. The basic steps in modern lossy video compression are block-based spatial or temporal prediction, transformation of the prediction error block, quantization of the transform coefficients and entropy coding of the quantized coefficients together with other side information. In some cases, this lossy coding architecture may not be efficient for compression. For example, when lossless video compression is desirable, the transform and quantization steps...
Statistical Analysis and Directional Coding of Layer-based HDR Image Coding Residue
Feyiz, Kutan; Kamışlı, Fatih; Zerman, Emin; Valenzise, Giuseppe; Koz, Alper; Dufaux, Frederic (2017-10-18)
Existing methods for layer-based backward compatible high dynamic range (HDR) image and video coding mostly focus on the rate-distortion optimization of base layer while neglecting the encoding of the residue signal in the enhancement layer. Although some recent studies handle residue coding by designing function based fixed global mapping curves for 8-bit conversion and exploiting standard codecs on the resulting 8-bit images, they do not take the local characteristics of residue blocks into account. Inspi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Koz and A. A. Alatan, “Oblivious spatio-temporal watermarking of digital video by exploiting the human visual system,”
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
, pp. 326–337, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36584.