Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Engineered Deregulation of Expression in Yeast with Designed Hybrid-Promoter Architectures in Coordination with Discovered Master Regulator Transcription Factor
Date
2020-04-01
Author
Ergun, Burcu Gunduz
Demir, Irem
Ozdamar, Tuncer H.
Gasser, Brigitte
Mattanovich, Diethard
Çalık, Pınar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
0
downloads
Cite This
Engineered promoters are key components in the cell-factory design, allowing precise and enhanced expression of genes. Promoters having exceptional strength are attractive candidates for designing metabolic engineering strategies for tailoring de novo production strategies that require directed evolution methods by engineering with de novo synthetic biology tools. Here, the custom-designed AOX1 hybrid-promoter architectures in coordination with targeted transcription factors are shown, transcriptionally rewired the expression over methanol-free substrate-utilization pathway(s) and converted methanol-dependent Pichia pastoris alcohol oxidase 1(AOX1) promoter (P-AOX1) expression into a non-toxic carbon-source-regulated system. AOX1 promoter variants are engineered by replacing specified cis-regulatory DNA elements with synthetic Adr1, Cat8, and Aca2 cis-acting DNA elements for Mxr1, Cat8, and Aca1 binding, respectively. Applications of the engineered-promoters are validated for eGFP expression and extracellular human serum albumin production. The hybrid-promoter architecture designed with single Cat8 cis-acting DNA element deregulates the expression on ethanol. Compared with P-AOX1 on methanol, the expression on ethanol is increased with i) PAOX1/Cat8-L3 (designed with single Cat8 cis-acting element) to 74%, ii) PAOX1/Adr1-L3/Cat8-L3 (designed with single- Cat8 and Adr1 cis-acting elements) to 85%, and for further consolidation of deregulated expression iii) P-eAOX1 (designed with triplet- Cat8 and Adr1 cis-acting elements) 1.30-fold, at t = 20 h of batch cultivations.
Subject Keywords
Alcohol oxidase 1 (AOX1) promoter
,
Cat8
,
Engineered promoter
,
ethanol utilization pathway
,
Pichia pastoris (Komagataella phaffii)
URI
https://hdl.handle.net/11511/36633
Journal
ADVANCED BIOSYSTEMS
DOI
https://doi.org/10.1002/adbi.201900172
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Hybrid-architectured double-promoter expression systems enhance and upregulate-deregulated gene expressions in Pichia pastoris in methanol-free media
Demir, Irem; Çalık, Pınar (Springer Science and Business Media LLC, 2020-10-01)
Double-promoter expression system (DPES) design as de novo metabolic engineering strategy enables fine-tuned and enhanced gene expression. We constructed a collection of monodirectional hybrid-architectured DPESs with engineered promoter variants P(ADH2-Cat8-L2)and P(mAOX1)and with the naturally occurring promoter P(GAP)to enhance and upregulate-deregulated gene expressions inPichia pastorisin methanol-free media. Reporter red fluorescent protein (mApple) and enhanced green fluorescent protein (eGFP) were e...
Hybrid-architectured promoter design to engineer expression in yeast
Gündüz Ergün, Burcu; Çalık, Pınar (Academic Press Inc., 2021-01-01)
Engineered promoters are key components that allow engineered expression of genes in the cell-factory design. Promoters having exceptional strength are attractive candidates for designing metabolic engineering strategies for tailoring de novo production strategies that require directed evolution methods by engineering with de novo synthetic biology tools. Engineered promoter variants (EPVs) of naturally occurring promoters (NOPs) can be designed using metabolic engineering strategies and synthetic biology t...
Hybrid-architectured promoter design to engineer expression in yeast
Ergun, Burcu Gunduz; Çalık, Pınar (2021-01-01)
Engineered promoters are key components that allow engineered expression of genes in the cell-factory design. Promoters having exceptional strength are attractive candidates for designing metabolic engineering strategies for tailoring de novo production strategies that require directed evolution methods by engineering with de novo synthetic biology tools. Engineered promoter variants (EPVs) of naturally occurring promoters (NOPs) can be designed using metabolic engineering strategies and synthetic biology t...
Design and construction of double promoter systems and their use in pharmaceutical protein production in P. Pastoris
Demir, İrem; Çalık, Pınar; Department of Chemical Engineering (2019)
Intracellular phenomena such as promoter strength, mRNA secondary structure, translation efficiency and codon preference, 5′-untranslated region processing, and protein turnover, have impacts directly on the expression of heterologous genes. Design of multi-promoter expression systems with constituent strong promoters and engineered promoter variants is a novel metabolic engineering strategy for increasing the promoter strength further, and tuning the expression for recombinant protein (r-protein) productio...
Engineering of alcohol dehydrogenase 2 hybrid-promoter architectures in Pichia pastoris to enhance recombinant protein expression on ethanol
Ergun, Burcu Gunduz; Gasser, Brigitte; Mattanovich, Diethard; Çalık, Pınar (2019-07-09)
The aim of this work is to increase recombinant protein expression in Pichia pastoris over the ethanol utilization pathway under novel-engineered promoter variants (NEPVs) of alcohol dehydrogenase 2 promoter (P-ADH2) through the generation of novel regulatory circuits. The NEPVs were designed by engineering of transcription factor binding sites (TFBSs) determined by in silico analyses and manual curation systematically, by (a) single-handedly replacement of specified TFBSs with synthetic motifs for Mxr1, Ca...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. G. Ergun, I. Demir, T. H. Ozdamar, B. Gasser, D. Mattanovich, and P. Çalık, “Engineered Deregulation of Expression in Yeast with Designed Hybrid-Promoter Architectures in Coordination with Discovered Master Regulator Transcription Factor,”
ADVANCED BIOSYSTEMS
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36633.