Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
ARAS Human Activity Datasets In Multiple Homes with Multiple Residents
Download
index.pdf
Date
2013-05-08
Author
Alemdar, Hande
Ertan, Halil
Incel, Ozlem Durmaz
Ersoy, Cem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
47
downloads
The real world human activity datasets are of great importance in development of novel machine learning methods for automatic recognition of human activities in smart environments. In this study, we present the details of ARAS (Activity Recognition with Ambient Sensing) human activity recognition datasets that are collected from two real houses with multiple residents during two months. The datasets contain the ground truth labels for 27 different activities. Each house was equipped with 20 binary sensors of different types that communicate wirelessly using the ZigBee protocol. A full month of information which contains the sensor data and the activity labels for both residents was gathered from each house, resulting in a total of two months data. In the paper, particularly, we explain the details of sensor selection, targeted activities, deployment of the sensors and the characteristics of the collected data and provide the results of our preliminary experiments on the datasets.
Subject Keywords
Human activity
,
Wireless sensor networks
URI
https://hdl.handle.net/11511/36652
DOI
https://doi.org/10.4108/icst.pervasivehealth.2013.252120
Collections
Department of Computer Engineering, Conference / Seminar