A fine-resolution frequency estimator using an arbitrary number of DFT coefficients

2014-12-01
A method for the frequency estimation of complex exponential signals observed under additive white Gaussian noise is presented. Unlike competing methods based on relatively few Discrete Fourier Transform (DFT) samples, the presented technique can generate a frequency estimate by fusing the information from all DFT samples. The estimator is shown to follow the Cramer-Rao bound with a smaller signal-to-noise ratio (SNR) gap than the competing estimators at high SNR.
SIGNAL PROCESSING

Suggestions

A Method For Fine Resolution Frequency Estimation From Three DFT Samples
Candan, Çağatay (2011-06-01)
The parameter estimation of a complex exponential waveform observed under white noise is typically tackled in two stages. In the first stage, a coarse frequency estimate is found by the application of an N-point DFT to the input of length N. In the second stage, a fine search around the peak determined in the first stage is conducted. The method proposed in this paper presents a simpler alternative. The method suggests a nonlinear relation involving three DFT samples already calculated in the first stage to...
An efficient method for fundamental frequency estimation of periodic signals with harmonics
Çelebi, Utku; Candan, Çağatay; Department of Electrical and Electronics Engineering (2020-8)
A computationally efficient method for the fundamental frequency estimation of a group of harmonically related complex sinusoids is given. To this aim, an efficient frequency estimation method for single tone complex sinusoids is adapted to the harmonic frequency estimation problem. The main idea of the suggested Fast Fourier Transform based method is the frequency estimation of individual complex sinusoids after the removal of the interference due to other harmonics. After several iterations of estimation ...
Simplified MAP estimator for OFDM systems under fading
Cueruek, Selva Muratoglu; Tanık, Yalçın (2007-04-25)
This paper presents a simplified Maximum A Posteriori (MAP) estimator, which yields channel taps in OFDM systems under fading conditions using a parametric correlation model, assuming that the channel is frequency selective, slowly time varying and Gaussian. Expressions for the variance of estimation error are derived to evaluate the performance of the MAP estimator. The relation between the correlation of subchannels taps and error variance and the effect of Signal to Noise Ratio (SNR) are investigated. Th...
A simplified MAP channel estimator for OFDM systems under Rayleigh fading
ÇÜRÜK, SELVA; Tanık, Yalçın (2010-06-01)
This paper presents a simplified Maximum A Posteriori (SMAP) channel estimator to be used in orthogonal frequency division multiplexing (OFDM) systems under the Rayleigh fading assumption for the subchannels, using a parametric correlation model and assuming that the channel is frequency selective and slowly time varying. Expressions for the mean-square error (MSE) of estimations are derived to evaluate the performance of the estimator. The relation between the correlation of subchannels taps and error vari...
Prospects of FMCW-based frequency diverse array radar
Cetiner, Ramazan; Cetintepe, Cagri; Demir, Şimşek; Hizal, Altunkan (2019-11-01)
The linear frequency modulated (LFM) frequency modulated continuous wave (FMCW)-based frequency diverse array (FDA) radar concept is investigated in detail. The radar operates as a linear pulsed FMCW/FDA in the transmission (TX) mode while it operates as a pulsed FMCW/phased array (PA) in the receiving mode. The issues such as low signal-to-noise ratio (SNR) of FDA, the time-angle scanning and time-range ambiguities are studied. It is shown that the local instantaneous frequency bandwidth is much smaller th...
Citation Formats
U. Orguner and Ç. Candan, “A fine-resolution frequency estimator using an arbitrary number of DFT coefficients,” SIGNAL PROCESSING, pp. 17–21, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36695.