Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A fine-resolution frequency estimator using an arbitrary number of DFT coefficients
Date
2014-12-01
Author
Orguner, Umut
Candan, Çağatay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
227
views
0
downloads
Cite This
A method for the frequency estimation of complex exponential signals observed under additive white Gaussian noise is presented. Unlike competing methods based on relatively few Discrete Fourier Transform (DFT) samples, the presented technique can generate a frequency estimate by fusing the information from all DFT samples. The estimator is shown to follow the Cramer-Rao bound with a smaller signal-to-noise ratio (SNR) gap than the competing estimators at high SNR.
Subject Keywords
Frequency Estimation
,
Cramer-Rao Bound
URI
https://hdl.handle.net/11511/36695
Journal
SIGNAL PROCESSING
DOI
https://doi.org/10.1016/j.sigpro.2014.05.013
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A Method For Fine Resolution Frequency Estimation From Three DFT Samples
Candan, Çağatay (2011-06-01)
The parameter estimation of a complex exponential waveform observed under white noise is typically tackled in two stages. In the first stage, a coarse frequency estimate is found by the application of an N-point DFT to the input of length N. In the second stage, a fine search around the peak determined in the first stage is conducted. The method proposed in this paper presents a simpler alternative. The method suggests a nonlinear relation involving three DFT samples already calculated in the first stage to...
An efficient method for fundamental frequency estimation of periodic signals with harmonics
Çelebi, Utku; Candan, Çağatay; Department of Electrical and Electronics Engineering (2020-8)
A computationally efficient method for the fundamental frequency estimation of a group of harmonically related complex sinusoids is given. To this aim, an efficient frequency estimation method for single tone complex sinusoids is adapted to the harmonic frequency estimation problem. The main idea of the suggested Fast Fourier Transform based method is the frequency estimation of individual complex sinusoids after the removal of the interference due to other harmonics. After several iterations of estimation ...
Simplified MAP estimator for OFDM systems under fading
Cueruek, Selva Muratoglu; Tanık, Yalçın (2007-04-25)
This paper presents a simplified Maximum A Posteriori (MAP) estimator, which yields channel taps in OFDM systems under fading conditions using a parametric correlation model, assuming that the channel is frequency selective, slowly time varying and Gaussian. Expressions for the variance of estimation error are derived to evaluate the performance of the MAP estimator. The relation between the correlation of subchannels taps and error variance and the effect of Signal to Noise Ratio (SNR) are investigated. Th...
A simplified MAP channel estimator for OFDM systems under Rayleigh fading
ÇÜRÜK, SELVA; Tanık, Yalçın (2010-06-01)
This paper presents a simplified Maximum A Posteriori (SMAP) channel estimator to be used in orthogonal frequency division multiplexing (OFDM) systems under the Rayleigh fading assumption for the subchannels, using a parametric correlation model and assuming that the channel is frequency selective and slowly time varying. Expressions for the mean-square error (MSE) of estimations are derived to evaluate the performance of the estimator. The relation between the correlation of subchannels taps and error vari...
A robust algorithm for the solution of electromagnetic problems over a frequency interval via the Pade approximation
Kuzuoğlu, Mustafa (Wiley, 1999-03-20)
In this paper, we present an efficient and systematic algorithm for the solution of electromagnetic scattering and radiation problems over a wide frequency interval. The algorithm is based on the evaluation of the Pade approximant of the solution vector, constructed at a minimum number of expansion frequencies within the interval of interest. The bisection algorithm introduced in this paper is robust. It keeps the approximation error bounded by a predefined constant over the entire frequency band. (C) 1999 ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Orguner and Ç. Candan, “A fine-resolution frequency estimator using an arbitrary number of DFT coefficients,”
SIGNAL PROCESSING
, pp. 17–21, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36695.