In Silico Geobacter sulfurreducens Metabolism and Its Representation in Reactive Transport Models

Download
2009-01-01
King, E. L.
Tuncay, Kağan
Ortoleva, P.
Meile, C.
Microbial activity governs elemental cycling and the transformation of many anthropogenic substances in aqueous environments. Through the development of a dynamic cell model of the well-characterized, versatile, and abundant Geobacter sulfurreducens, we showed that a kinetic representation of key components of cell metabolism matched microbial growth dynamics observed in chemostat experiments under various environmental conditions and led to results similar to those from a comprehensive flux balance model. Coupling the kinetic cell model to its environment by expressing substrate uptake rates depending on intra- and extracellular substrate concentrations, two-dimensional reactive transport simulations of an aquifer were performed. They illustrated that a proper representation of growth efficiency as a function of substrate availability is a determining factor for the spatial distribution of microbial populations in a porous medium. It was shown that simplified model representations of microbial dynamics in the subsurface that only depended on extracellular conditions could be derived by properly parameterizing emerging properties of the kinetic cell model.
APPLIED AND ENVIRONMENTAL MICROBIOLOGY

Suggestions

Targeted disruption of homoserine dehydrogenase gene and its effect on cephamycin C production in Streptomyces clavuligerus
Yilmaz, Ebru I.; Caydasi, Ayse K.; Özcengiz, Gülay (Springer Science and Business Media LLC, 2008-01-01)
The aspartate pathway of Streptomyces clavuligerus is an important primary metabolic pathway which provides substrates for beta-lactam synthesis. In this study, the hom gene which encodes homoserine dehydrogenase was cloned from the cephamycin C producer S. clavuligerus NRRL 3585 and characterized. The fully sequenced open reading frame encodes 433 amino acids with a deduced M (r) of 44.9 kDa. The gene was heterologously expressed in the auxotroph mutant Escherichia coli CGSC 5075 and the recombinant protei...
Metabolic Flux Analysis for Recombinant Protein Production by Pichia pastoris Using Dual Carbon Sources: Effects of Methanol Feeding Rate
Celik, Eda; Çalık, Pınar; Oliver, Stephen G. (Wiley, 2010-02-01)
The intracellular metabolic fluxes through the central carbon pathways in the bioprocess for recombinant human erythropoietin (rHuEPO) production by Pichia pastoris (Mut(+)) were calculated. to investigate the metabolic effects of dual carbon sources (methanol/sorbitol) and the methanol feed rate, and to obtain a deeper understanding the regulatory circuitry of P. pastoris, using the established stoichiometry-based model containing 102 metabolites and 141 reaction fluxes. Four fed-batch operations with (MS-...
SURVIVAL KINETICS OF LACTIC-ACID STARTER CULTURES DURING AND AFTER FREEZE-DRYING
BOZOGLU, F; OZILGEN, M; BAKIR, U (Elsevier BV, 1987-09-01)
Survival kinetics of lactic acid starter cultures were modeled considering the microorganism and external medium interfacial area as the critical factors determining the resistance of the microorganisms to freeze-drying. Surviving fraction of the microorganisms increased with the increasing biomass concentration during freeze-drying, and this is attributed to the mutual shielding effect of the microorganisms against the severe conditions of the external medium. Survival of the microorganisms over the storag...
Selective Quantification of Viable Escherichia coli Bacteria in Biosolids by Quantitative PCR with Propidium Monoazide Modification
Taskin, Bilgin; Gözen, Ayşe Gül; Duran, Metin (American Society for Microbiology, 2011-07-01)
Quantitative differentiation of live cells in biosolids samples, without the use of culturing-based approaches, is highly critical from a public health risk perspective, as recent studies have shown significant regrowth and reactivation of indicator organisms. Persistence of DNA in the environment after cell death in the range of days to weeks limits the application of DNA-based approaches as a measure of live cell density. Using selective nucleic acid intercalating dyes like ethidium monoazide (EMA) and pr...
Biodegradation of the Allelopathic Chemical Pterostilbene by a Sphingobium sp. Strain from the Peanut Rhizosphere
Yu, Ri-Qing; Kurt, Zöhre; He, Fei; Spain, Jim C. (American Society for Microbiology, 2019-03-01)
Many plants produce allelopathic chemicals, such as stilbenes, to inhibit pathogenic fungi. The degradation of allelopathic compounds by bacteria associated with the plants would limit their effectiveness, but little is known about the extent of biodegradation or the bacteria involved. Screening of tissues and rhizosphere of peanut (Arachis hypogaea) plants revealed substantial enrichment of bacteria able to grow on resveratrol and pterostilbene, the most common stilbenes produced by the plants. Investigati...
Citation Formats
E. L. King, K. Tuncay, P. Ortoleva, and C. Meile, “In Silico Geobacter sulfurreducens Metabolism and Its Representation in Reactive Transport Models,” APPLIED AND ENVIRONMENTAL MICROBIOLOGY, pp. 83–92, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/36845.