Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Effects of pulse feeding of beet molasses on recombinant benzaldehyde lyase production by Escherichia coli BL21(DE3)
Date
2009-11-01
Author
Çalık, Pınar
Levent, Hande
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
The effect of fed-batch operation (FBO) strategy was investigated using pretreated-beet molasses, containing galactose that induces the lac promoter, on benzaldehyde lyase (BAL) production by recombinant Escherichia coli BL21(DE3)pLySs. After batch cultivation with 30 g l(-1) pretreated-beet molasses consisting of 7.5 g l(-1) glucose and 7.5 g l(-1) fructose, three FBO strategies were applied at dissolved oxygen (=40%) cascade to air-flow rate. In FBO1 when air-flow rate decreased considerably, feed was given to the system in pulses in such a way that pretreated-beet molasses concentration increased by 10 kg m(-3) (containing 2.5 g l(-1) glucose+2.5 g l(-1) fructose); however, decrease in air-flow rate demonstrated only the absence of glucose but not fructose. Thus, in FBO2 when fructose and glucose were completely utilized, pretreated-beet molasses was pulse-fed and its concentration increased by 10 g l(-1). In FBO3 with the decreased amount of pretreated-beet molasses (6 g l(-1)), shift response time from glucose to fructose consumption was avoided, and glucose and fructose consumptions were well correlated with air-flow rate, and the highest C (X) (8.04 g l(-1)) and BAL (2,315 U ml(-1)) production were obtained (t = 24 h) with the highest substrate yield on cell and product formation.
Subject Keywords
Biotechnology
,
Applied Microbiology and Biotechnology
,
General Medicine
URI
https://hdl.handle.net/11511/37394
Journal
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
DOI
https://doi.org/10.1007/s00253-009-2060-2
Collections
Department of Chemical Engineering, Article