Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Low-level image segmentation based scene classification
Date
2010-08-26
Author
Akbaş, Emre
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
191
views
0
downloads
Cite This
This paper is aimed at evaluating the semantic information content of multiscale, low-level image segmentation. As a method of doing this, we use selected features of segmentation for semantic classification of real images. To estimate the relative measure of the information content of our features, we compare the results of classifications we obtain using them with those obtained by others using the commonly used patch/grid based features. To classify an image using segmentation based features, we model the image in terms of a probability density function, a Gaussian mixture model (GMM) to be specific, of its region features. This GMM is fit to the image by adapting a universal GMM which is estimated so it fits all images. Adaptation is done using a maximum-aposteriori criterion. We use kernelized versions of Bhattacharyya distance to measure the similarity between two GMMs and support vector machines to perform classification. We outperform previously reported results on a publicly available scene classification dataset. These results suggest further experimentation in evaluating the promise of low level segmentation in image classification.
Subject Keywords
EM
,
Map adaptation
,
Gmm
,
segmentation
,
Scene classification
URI
https://hdl.handle.net/11511/37451
DOI
https://doi.org/10.1109/icpr.2010.884
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
An image retrieval system based on region classification
Ozcanli, OC; Yarman-Vural, F (2004-01-01)
In this study, a content based image retrieval (CBIR) system to query the objects in an image database is proposed. Images are represented as collections of regions after being segmented with Normalized Cuts algorithm. MPEG-7 content descriptors are used to encode regions in a 239-dimensional feature space. User of the proposed CBIR system decides which objects to query and labels exemplar regions to train the system using a graphical interface. Fuzzy ARTMAP algorithm is used to learn the mapping between fe...
Unsupervised segmentation of hyperspectral images using modified phase correlation
Ertuerk, Alp; Ertuerk, Sarp (2006-10-01)
This letter presents hyperspectral image segmentation based on the phase-correlation measure of subsampled hyperspectral data, which is referred to as modified phase correlation. The hyperspectral spectrum of each pixel is initially subsampled to gain, robustness against noise and spatial variability, and phase correlation is applied to determine spectral similarity. Similar and dissimilar pixels are decided according to the peak value of the phase correlation result to determine pixels that fall into the s...
Low-level multiscale image segmentation and a benchmark for its evaluation
Akbaş, Emre (Elsevier BV, 2020-10-01)
In this paper, we present a segmentation algorithm to detect low-level structure present in images. The algorithm is designed to partition a given image into regions, corresponding to image structures, regardless of their shapes, sizes, and levels of interior homogeneity. We model a region as a connected set of pixels that is surrounded by ramp edge discontinuities where the magnitude of these discontinuities is large compared to the variation inside the region. Each region is associated with a scale that d...
Combining MPEG-7 based visual experts for reaching semantics
Soysal, M; Alatan, Abdullah Aydın (2003-01-01)
Semantic classification of images using low-level features is a challenging problem. Combining experts with different classifier structures, trained by MPEG-7 low-level color and texture descriptors is examined as a solution alternative. For combining different classifiers and features, two advanced decision mechanisms are proposed, one of which enjoys a significant classification performance improvement. Simulations are conducted on 8 different visual semantic classes, resulting in accuracy improvements be...
A Graph-Based Approach for Video Scene Detection
Sakarya, Ufuk; Telatar, Zjya (2008-04-22)
In this paper, a graph-based method for video scene detection is proposed. The method is based on a weighted undirected graph. Each shot is a vertex on the graph. Edge weights among the vertices are evaluated by using spatial and temporal similarities of shots. By using the complete information of the graph, a set of the vertices mostly similar to each other and dissimilar to the others is detected. Temporal continuity constraint is achieved on this set. This set is the first detected video scene. The verti...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Akbaş, “Low-level image segmentation based scene classification,” 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37451.