Systematic message schedule construction for time-triggered CAN

2007-11-01
The most widely used standard for in-vehicle communication networks that interconnect electronic control units is the controller area network (CAN). However, the event-triggered architecture of CAN introduces several issues, such as predictability, signal jitter, and reliability. Different time-triggered networks. are being developed to address these issues. In this paper, we focus on time-triggered CAN (TTCAN), which achieves time-triggered behavior by implementing time-division multiple access on the existing CAN network standard. The main task is thus to construct a message schedule for a given set of messages while fulfilling certain performance criteria. To this end, we provide a formal framework for the construction of feasible message schedules in TTCAN networks by considering several performance metrics, such as bandwidth utilization and jitter, as well as the hardware constraints of the TTCAN controller specification.
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

Suggestions

Controller area network response time analysis and scheduling for advanced topics: offsets, FIFO queues and gateways /
Alkan, Burak; Schmidt, Şenan Ece; Schmidt, Klaus Verner; Department of Electrical and Electronics Engineering (2015)
Controller Area Network (CAN) is the most widely used in-vehicle network for the communication among electronic control units (ECUs). CAN has a priority-based arbitration mechanism and the classical usage of CAN assumes the implementation of priority queues (PQs) on ECUs. Based on this assumption, the literature provides e cient algorithms for the computation of worst-case response times (WCRTs) of messages as well as for the appropriate assignment of priorities to messages in order to meet real-time guaran...
Transmit Precoding for Flat-Fading MIMO Multiuser Systems With Maximum Ratio Combining Receivers
Coskun, Adem; Candan, Çağatay (Institute of Electrical and Electronics Engineers (IEEE), 2011-02-01)
We examine the application of transmit precoding in multiuser multi-input-multi-output (MIMO) communication systems with maximum ratio combining (MRC) receivers. In many multiuser applications, the maximum-likelihood or minimum mean-square error (MMSE) receivers can be prohibitive to implement due to their high implementation complexity. We examine the performance of the system with simple MRC receivers and carefully selected precoders, which are designed to compensate the lack of high-complexity receivers,...
Message Scheduling for the FlexRay Protocol: The Dynamic Segment
Schmidt, Şenan Ece; Schmidt, Klaus Verner (Institute of Electrical and Electronics Engineers (IEEE), 2009-06-01)
The FlexRay communication protocol is expected to be the de facto standard for high-speed, in-vehicle communication. In this paper, we formally investigate the scheduling problem for the dynamic segment (DS) of FlexRay. We take the bounds on the generation times and the timing requirements of the signals into consideration to propose a reservation-based scheduling approach that preserves the flexible medium access of the DS. To obtain efficient schedules, we formulate a nonlinear integer program- ming probl...
Delay aware reliable transport in wireless sensor networks
Gungor, Vehbi C.; Akan, Oezguer B. (Wiley, 2007-10-01)
Wireless sensor networks (WSN) are event-based systems that rely on the collective effort of several sensor nodes. Reliable event detection at the sink is based on collective information provided by the sensor nodes and not on any individual sensor data. Hence, conventional end-to-end reliability definitions and solutions are inapplicable in the WSN regime and would only lead to a waste of scarce sensor resources. Moreover, the reliability objective of WSN must be achieved within a certain real-time delay b...
Computation of Response Time Distributions for Messages on the Controller Area Network
Batur, Ahmet; Schmidt, Şenan Ece; Schmidt, Klaus Verner (2018-08-23)
The response time of messages is an important parameter for the design of in-vehicle networks based on the controller area network (CAN). The message transmission on CAN is affected by several non-deterministic factors such as stuff bits that are added to CAN frames depending on the message payload or changing phases among the asynchronous CAN nodes because of clock drifts. The resulting probabilistic nature of message response times on CAN is captured by the response time distribution (RTD) that quantifies...
Citation Formats
K. V. Schmidt and Ş. E. Schmidt, “Systematic message schedule construction for time-triggered CAN,” IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, pp. 3431–3441, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37638.