Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Brain Computer Interfaces for Silent Speech
Date
2017-05-01
Author
TABAR, Yousef Rezaei
Halıcı, Uğur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
39
views
0
downloads
Cite This
Brain Computer Interface (BCI) systems provide control of external devices by using only brain activity. In recent years, there has been a great interest in developing BCI systems for different applications. These systems are capable of solving daily life problems for both healthy and disabled people. One of the most important applications of BCI is to provide communication for disabled people that are totally paralysed. In this paper, different parts of a BCI system and different methods used in each part are reviewed. Neuroimaging devices, with an emphasis on EEG (electroencephalography), are presented and brain activities as well as signal processing methods used in EEG-based BCIs are explained in detail. Current methods and paradigms in BCI based speech communication are considered.
Subject Keywords
Single-trial eeg
,
Random neural-networks
,
Bci-competition-iii;
,
Virtual keyboard
,
Classification
,
Communication
,
Movement
,
Design
,
Identification
,
Patterns
URI
https://hdl.handle.net/11511/37736
Journal
EUROPEAN REVIEW
DOI
https://doi.org/10.1017/s1062798716000569
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Brain Computer Interfaces
Halıcı, Uğur (null; 2015-11-12)
Brain Computer Interface (BCI) systems provide control of external devices by using only brain activity. In recent years, there has been a great interest in developing BCI systems for different applications. These systems are capable of solving daily life problems for both healthy and disabled people. One of the most important applications of BCI is to provide communication for disabled people that are totally paralysed. In this paper, different parts of a BCI system and different methods used in each part ...
Neural networks with piecewise constant argument and impact activation
Yılmaz, Enes; Akhmet, Marat; Department of Scientific Computing (2011)
This dissertation addresses the new models in mathematical neuroscience: artificial neural networks, which have many similarities with the structure of human brain and the functions of cells by electronic circuits. The networks have been investigated due to their extensive applications in classification of patterns, associative memories, image processing, artificial intelligence, signal processing and optimization problems. These applications depend crucially on the dynamical behaviors of the networks. In t...
Analysis and classification of spelling paradigm EEG data and an attempt for optimization of channels used
Yıldırım, Asil; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2010)
Brain Computer Interfaces (BCIs) are systems developed in order to control devices by using only brain signals. In BCI systems, different mental activities to be performed by the users are associated with different actions on the device to be controlled. Spelling Paradigm is a BCI application which aims to construct the words by finding letters using P300 signals recorded via channel electrodes attached to the diverse points of the scalp. Reducing the letter detection error rates and increasing the speed of...
Neural identification of dynamic systems on FPGA with improved PSO learning
Cavuslu, Mehmet Ali; KARAKUZU, CİHAN; KARAKAYA, FUAT (2012-09-01)
This work introduces hardware implementation of artificial neural networks (ANNs) with learning ability on field programmable gate array (FPGA) for dynamic system identification. The learning phase is accomplished by using the improved particle swarm optimization (PSO). The improved PSO is obtained by modifying the velocity update function. Adding an extra term to the velocity update function reduced the possibility of stucking in a local minimum. The results indicates that ANN, trained using improved PSO a...
Intelligent student assessment and coaching interface to web-based education-oriented intelligent experimentation on robot supported laboratory set-ups
Motuk, Halil Erdem; Erkmen, Aydan Müşerref; Erkmen, İsmet; Department of Electrical and Electronics Engineering (2003)
This thesis presents a framework for an intelligent interface for the access of robotsupported remote laboratories through the Internet. The framework is composed of the student assessment and coaching system, the experimentation scenario, and the associated graphical user interface. Student assessment and coaching system is the main feature of a successful intelligent interface for use during remote experimentation with a robot-supported laboratory setup. The system has a modular structure employing artifi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. R. TABAR and U. Halıcı, “Brain Computer Interfaces for Silent Speech,”
EUROPEAN REVIEW
, pp. 208–230, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37736.