Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Encapsulation of rosemary essential oil
Date
2015-11-01
Author
Turasan, Hazal
Şahin, Serpil
Şümnü, Servet Gülüm
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
180
views
0
downloads
Cite This
Encapsulation protects sensitive food ingredients against oxygen, heat, moisture, pH and it masks the unwanted taste of nutrients. The objective of the study was to encapsulate the rosemary essential oil in micron size and to find the optimum coating material formulation by investigating the physicochemical properties and storage stability of microcapsules. In the capsule preparation two different ratios of whey protein concentrate (WP) and maltodextrin (MD) (1:3 and 3:1), three different core to coating ratios (1:40, 1:20 and 1:10) and two different dextrose equivalent (DE) MD (DE:13-17 and DE:4-7) were used. Emulsions were analyzed for their particle size distributions and freeze dried capsules were analyzed for their drying efficiencies, encapsulation efficiencies, surface morphologies, and concentrations of 1,8-cineole during storage. Increasing WP:MD ratio was found to increase both drying and encapsulation efficiencies. Also, capsules having core to coating ratio of 1:20 and MD with DE:13-17 gave the highest drying and encapsulation efficiency values. Changing DE value of MD did not have any significant effect on particle size distributions and surface morphologies of the capsules. Lastly, encapsulation was found to be an effective method for increasing the storage stability of 1,8-cineole.
Subject Keywords
Microencapsulation
,
Rosemary essential oil
,
Whey protein concentrate
,
Maltodextrin
,
Dextrose equivalence
URI
https://hdl.handle.net/11511/38059
Journal
LWT-FOOD SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1016/j.lwt.2015.05.036
Collections
Department of Food Engineering, Article
Suggestions
OpenMETU
Core
Encapsulation of rosemary essential oil
Turasan, Hazal; Şahin, Serpil; Şümnü, Servet Gülüm; Department of Food Engineering (2014)
Encapsulation protects sensitive food ingredients against oxygen, heat, moisture and pH until they are released to the system. In addition, it can mask the unwanted taste of nutrients that are added to the foods for fortification purposes. The studies about encapsulation of essential oils in micro or nano-size are very much limited. The objective of the study was to encapsulate the rosemary essential oil in micron size and to find the optimum coating material formulation by investigating the physicochemical...
Encapsulation of wheat germ oil
Yazıcıoğlu, Başak; Şahin, Serpil; Şomnu, Gülüm; Department of Food Engineering (2013)
Wheat germ oil is a rich source of omega 3 and omega 6, octacosanol and tocopherol which has vitamin E activity. Due to these properties it is beneficial for health but it is prone to oxidation in free form. The aim of this study was to encapsulate wheat germ oil in micron size and determine the best encapsulation conditions by analysing encapsulation efficiency, particle size distribution and surface morphology of the capsules. The effects of core to coating ratio, coating materials ratio and ultrasonicati...
Encapsulation of vitamin B1 using double emulsion method
Yüce Altuntaş, Özlem; Şümnü, Servet Gülüm; Şahin, Serpil; Department of Food Engineering (2016)
The main objective of the study was to encapsulate Vitamin B1 in the inner aqueous phase of water-in-oil-in-water (W/O/W) type double emulsion containing hazelnut oil as oil phase and to transfer it to food products for enrichment. It was also aimed to replace the synthetic Polyglycerol Polyricinoleate (PGPR) with lecithin and to study the influence of homogenization methods on double emulsion characteristics. The expected type of emulsion, water in oil (W/O), could not be obtained by using only lecithin so...
Applicability of optimised in-vessel food waste composting for windrow systems
Çekmecelioğlu, Deniz; Graves, RE; Davitt, NH (Elsevier BV, 2005-08-01)
The presence of pathogens in various organic wastes requires careful attention to the composting process to minimise the chance of their survival. An optimised composting mixture from previous in-vessel composting studies (50% food waste, 40% manure, and 10% bulking agent) was evaluated using windrow composting. Conventional layering and mixing methods were used for constructing the windrows. Temperature was monitored as the indication of the efficiency of composting. Initial and final physico-chemical char...
Microbial detoxification of groundnut meal naturally contaminated with aflatoxin using rhodococcus erythropolis
Doğan, Önay Burak; Çekmecelioğlu, Deniz; Bozoğlu, Faruk; Department of Food Engineering (2015)
Aflatoxins are highly mutagenic toxins with carcinogenic effects produced as secondary metabolites by fungal species Aspergillus flavus and Aspergillus parasiticus under certain conditions. Chronic or acute consumption of aflatoxins found in food and feed products possesses great health risks. It is particularly an important problem in animal feed from food waste and by-products. Therefore there is growing need to eliminate aflatoxins from contaminated products. In this study, first the optimum growth condi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Turasan, S. Şahin, and S. G. Şümnü, “Encapsulation of rosemary essential oil,”
LWT-FOOD SCIENCE AND TECHNOLOGY
, pp. 112–119, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38059.