Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
STRUCTURAL STABILITY AND ENERGETICS OF SI4 ISOMERS - TOTAL ELECTRONIC-ENERGY CALCULATION
Date
1991-09-20
Author
Katırcıoğlu, Şenay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
201
views
0
downloads
Cite This
The structural stability and energetics of Si4 isomers have been investigated by using an empirical tight-binding (ETB) method. It has been found that the most stable Si4 microcluster is an exact tetrahedron with T(d) symmetry.
Subject Keywords
Physical and Theoretical Chemistry
,
General Physics and Astronomy
URI
https://hdl.handle.net/11511/38078
Journal
CHEMICAL PHYSICS LETTERS
DOI
https://doi.org/10.1016/0009-2614(91)87174-a
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
STRUCTURAL STABILITY AND ENERGETICS OF AS, SB AND BI MICROCLUSTERS - EMPIRICAL MANY-BODY POTENTIAL-ENERGY FUNCTION CALCULATION
Katırcıoğlu, Şenay (Elsevier BV, 1991-08-09)
The structural stability and energetics of As, Sb and Bi microclusters having 3-7 atoms have been investigated by using a recently developed empirical many-body potential energy function (PEF), which comprises two- and three-body atomic interactions. The PEF satisfies both bulk cohesive energy per atom and bulk structural stability exactly. It has been found that the most stable structures of As3, Sb3 and Sb4 microclusters are in linear form with D-infinity-h symmetry, Bi7 is in hexagonal pyramid form with ...
Structural and electronic properties of ZnmCdn microclusters: density functional theory calculations
Erkoç, Şakir (Elsevier BV, 2003-02-28)
The structural and electronic properties of isolated neutral ZnmCdn clusters for m + n less than or equal to 3 have been investigated by performing density functional theory calculations at B3LYP level. The optimum geometries, vibrational frequencies, electronic structures, and the possible dissociation channels of the clusters considered have been obtained.
Vibrational spectroscopy of hydrogen-bonded systems: Six-dimensional simulation of the IR spectrum of F-(H2O) complex
Toffolı, Danıele; Sparta, Manuel; Christiansen, Ove (Elsevier BV, 2011-06-24)
The vibrational dynamics of the F-(H2O) complex is studied using highly accurate six-dimensional molecular potential energy and dipole moment surfaces calculated at the CCSD (T)/cc-pVQZ and CCSD (T)/augcc-pVTZ levels with a multiresolution approach. The extent of mode-coupling is investigated with full vibrational configuration-interaction (FVCI) calculations. Coriolis coupling effects are also included with the aim to obtain quantitative agreement with the experimental data available. The vibrational absor...
Metallization of the C-60/Rh(100) interface revealed by valence photoelectron spectroscopy and density functional theory calculations
Wade, Abdou-Ciss; Lizzit, Silvano; Petaccia, Luca; Goldoni, Andrea; Diop, Djibril; Toffoli, Hande; Fabris, Stefano; Baroni, Stefano (AIP Publishing, 2010-06-01)
The electronic structure of single and multiple layers of C-60 molecules deposited on a Rh(100) surface is investigated by means of valence photoemission spectroscopy and density functional theory calculations. The binding of the fullerene monolayer to the metal surface yields the appearance of a new state in the valence band spectrum crossing the Fermi level. Insight into the metallization of the metal/fullerene interface is provided by the calculated electronic structure that allows us to correlate the me...
Sorption and diffusion of carbon dioxide and nitrogen in poly(methyl methacrylate)
Eslami, Hossein; Kesik, Melis; Karimi-Varzaneh, Hossein Ali; Mueller-Plathe, Florian (AIP Publishing, 2013-09-28)
Molecular dynamics simulations are performed to determine the solubility and diffusion coefficient of carbon dioxide and nitrogen in poly(methyl methacrylate) (PMMA). The solubilities of CO2 in the polymer are calculated employing our grand canonical ensemble simulation method, fixing the target excess chemical potential of CO2 in the polymer and varying the number of CO2 molecules in the polymer matrix till establishing equilibrium. It is shown that the calculated sorption isotherms of CO2 in PMMA, employi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ş. Katırcıoğlu, “STRUCTURAL STABILITY AND ENERGETICS OF SI4 ISOMERS - TOTAL ELECTRONIC-ENERGY CALCULATION,”
CHEMICAL PHYSICS LETTERS
, pp. 118–120, 1991, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38078.