Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Railway Fastener Inspection by Real-Time Machine Vision
Date
2015-07-01
Author
Aytekin, Caglar
REZAEITABAR, Yousef
Dogru, Sedat
Ulusoy, İlkay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
163
views
0
downloads
Cite This
In this paper, a real-time railway fastener detection system using a high-speed laser range finder camera is presented. First, an extensive analysis of various methods based on pixel-wise and histogram similarities are conducted on a specific railway route. Then, a fusing stage is introduced which combines least correlated approaches also considering the performance upgrade after fusing. Then, the resulting method is tested on a larger database collected from a different railway route. After observing repeated successes, the method is implemented on NI LabVIEW and run real-time with a high-speed 3-D camera placed under a railway carriage designed for railway quality inspection.
Subject Keywords
High-speed laser range finder
,
Railway fastener detection
,
Railway inspection
URI
https://hdl.handle.net/11511/38678
Journal
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
DOI
https://doi.org/10.1109/tsmc.2014.2388435
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Tracking rectangular and elliptical extended targets using laser measurements
Granström, Karl; Lundquist, Christian; Orguner, Umut (IEEE; 2011-07-08)
This paper considers tracking of extended targets using data from laser range sensors. Two types of extended target shapes are considered, rectangular and elliptical, and a method to compute predicted measurements and corresponding innovation covariances is suggested. The proposed method can easily be integrated into any tracking framework that relies on the use of an extended Kalman filter. Here, it is used together with a recently proposed Gaussian mixture probability hypothesis density (GM-PHD) filter fo...
Airport runway detection in satellite images by Adaboost Learning
ZÖNGÜR, Ugur; Halıcı, Uğur; AYTEKİN, Orsan; Ulusoy, İlkay (2009-09-03)
Advances in hardware and pattern recognition techniques, along with the widespread utilization of remote sensing satellites, have urged the development of automatic target detection systems in satellite images. Automatic detection of airports is particularly essential, due to the strategic importance of these targets. In this paper, a runway detection method using a segmentation process based on textural properties is proposed for the detection of airport runways, which is the most distinguishing element of...
Vision-Based Detection and Distance Estimation of Micro Unmanned Aerial Vehicles
Gökçe, Fatih; Üçoluk, Göktürk; Şahin, Erol; Kalkan, Sinan (MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND, 2015-9)
Detection and distance estimation of micro unmanned aerial vehicles (mUAVs) is crucial for (i) the detection of intruder mUAVs in protected environments; (ii) sense and avoid purposes on mUAVs or on other aerial vehicles and (iii) multi-mUAV control scenarios, such as environmental monitoring, surveillance and exploration. In this article, we evaluate vision algorithms as alternatives for detection and distance estimation of mUAVs, since other sensing modalities entail certain limitations on the environment...
Ship detection in synthetic aperture radar (SAR) images by deep learning
Ayhan, Oner; Sen, Nigar (2019-01-01)
In this paper, we propose a Convolutional Neural Network (CNN) based method to detect ships in Synthetic Aperture Radar (SAR) images. The architecture of proposed CNN has customized parts to detect small targets. In order to train, validate and test the CNN, TerraSAR-X Spot mode images are used. In the phase of data preparation, a GIS (Geographic Information System) specialist labels ships manually in all images. Later, image patches that contain ships are cropped and ground truths are also obtained from pr...
Sensor Fusion of a Camera and 2D LIDAR for Lane Detection
Schmidt, Klaus Verner (null; 2019-04-26)
This paper presents a novel lane detection algorithm based on fusion of camera and 2D LIDAR data. On the one hand, objects on the road are detected via 2D LIDAR. On the other hand, binary bird’s eye view (BEV) images are acquired from the camera data and the locations of objects detected by LIDAR are estimated on the BEV image. In order to remove the noise generated by objects on the BEV, a modified BEV image is obtained, where pixels occluded by the detected objects are turned into background pixels. Then,...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Aytekin, Y. REZAEITABAR, S. Dogru, and İ. Ulusoy, “Railway Fastener Inspection by Real-Time Machine Vision,”
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS
, pp. 1101–1107, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38678.