First-principles calculations for the structural and electronic properties of GaAs1-xPx nanowires

2016-03-01
Mohammad, Rezek
Katırcıoğlu, Şenay
Structural stability and electronic properties of GaAs1-xPx (0.0 <= x <= 1.0) nanowires (NWs) in zinc-blende (ZB) (similar to 5 <= diameter <= similar to 21 angstrom) and wurtzite (WZ) (similar to 5 <= diameter <= similar to 29 angstrom) phases are investigated by first-principles calculations based on density functional theory (DFT). GaAs (x = 0.0) and GaP (x = 1.0) compound NWs inWZ phase are found energetically more stable than in ZB structural ones. In the case of GaAs1-xPx alloy NWs, the energetically favorable phase is found size and composition dependent. All the presented NWs have semiconductor characteristics. The quantum size effect is clearly demonstrated for all GaAs1-xPx (0.0 <= x <= 1.0) NWs. The band gaps of ZB and WZ structural GaAs compound NWs with similar to 10 <= diameter <= similar to 21 angstrom similar to 5 <= diameter <= similar to 29 angstrom, respectively are enlarged by the addition of concentrations of phosphorus for obtaining GaAs1-xPx NWs proportional to the x values around 0.25, 0.50 and 0.75.
INTERNATIONAL JOURNAL OF MODERN PHYSICS C

Suggestions

First principles study on new half-metallic ferromagnetic ternary zinc-based sulfide and telluride (Zn3VS4 and Zn3VTe4)
Erkisi, Aytac; YILDIZ, BUĞRA; DEMİR, KADİR; SÜRÜCÜ, GÖKHAN (IOP Publishing, 2019-07-01)
In this resear, we have investigated electronic and magnetic behavior and also some mechanical properties of ternary zinc-based chalcogenides Zn(3)VCh(4) (Ch = S and Te) conform to P (4) over bar 3m space group with 215 space number, which have simple cubic (SC) crystal structure, by spin-polarized Generalized Gradient Approximation (GGA) within Density Functional Theory (DFT). To make extensive study within ab initio methods, after the optimization process to get optimal structural parameters in most suita...
FIRST-PRINCIPLES CALCULATIONS FOR THE STRUCTURAL AND ELECTRONIC PROPERTIES OF ScxAl1-xN ALLOYS
Mohammad, Rezek; Katırcıoğlu, Şenay (World Scientific Pub Co Pte Lt, 2013-10-01)
The first-principles calculations based on Density Functional Theory (DFT) within generalized gradient approximation (GGA) of Engel-Vosko-Perdew-Wang and modified exact exchange potential of Becke-Johnson have been introduced for the structural and electronic properties of the ScxAl1-xN alloys, respectively. The present lattice constants calculated for the ScAlN alloys and the end compounds (AlN and ScN) are found to be in very good agreement with the available experimental and theoretical ones. The stable ...
Structural and electronic properties of GaP nanowires
Mohammad, Rezek; Katırcıoğlu, Şenay (2015-09-01)
Structural stability and electronic properties of bare and hydrogenated GaP nanowires in zinc-blende and wurtzite phases have been investigated using first-principles calculations based on density functional theory. It is determined that relaxation of the hydrogenated GaP nanowires is very small compared to that of their bare ones. The wurtzite structural hydrogenated GaP nanowires are found more stable than the zinc-blende structural ones by cohesive energy calculations. It is obtained that all the bare an...
First principles study on the structural, electronic, mechanical and lattice dynamical properties of XRhSb (X = Ti and Zr) paramagnet half-Heusler antimonides
SÜRÜCÜ, GÖKHAN; CANDAN, ABDULLAH; Erkisi, Aytac; Gencer, Ayşenur; Güllü, Hasan Hüseyin (IOP Publishing, 2019-10-01)
The half-Heusler TiRhSb and ZrRhSb alloys in the formation of face-centered cubic MgAgAs-type structure, which conforms to the F (4) over bar 3m space group with 216 as the space number, have been investigated using Generalized Gradient Approximation (GGA) implemented in Density Functional Theory (DFT). The calculated formation enthalpies and the plotted energy-volume curves of different types of structural phases (alpha, beta, and gamma) in these alloys indicate that the gamma-phase structure is the best e...
First-principles study of structural, elastic, lattice dynamical and thermodynamical properties of GdX (X = Bi, Sb)
Korozlu, N.; Colakoglu, K.; Deligoz, E.; Sürücü, Gökhan (2010-01-01)
The results are presented of first-principles calculations of the structural, elastic and lattice dynamical properties of GdX (X = Bi, Sb). In particular, the lattice parameters, bulk modulus, phonon dispersion curves, elastic constants and their related quantities, such as Young's modulus, Shear modulus, Zener anisotropy factor, Poisson's ratio, Kleinman parameter, and longitudinal, transverse and average sound velocities, were calculated and compared with available experimental and other theoretical data....
Citation Formats
R. Mohammad and Ş. Katırcıoğlu, “First-principles calculations for the structural and electronic properties of GaAs1-xPx nanowires,” INTERNATIONAL JOURNAL OF MODERN PHYSICS C, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38948.