Hide/Show Apps

Severity Estimation of Interturn Short Circuit Fault for PMSM

Qi, Yuan
Bostancı, Emine
Zafarani, Mohsen
Akin, Bilal
This paper presents a novel method to estimate the number of shorted turns in a permanent magnet synchronous machine (PMSM) following the detection of interturn short-circuit (ITSC) fault and its location. In this proposed method, PMSM is excited through a low sinusoidal voltage at standstill condition to obtain the winding resistance and synchronous inductance by current response. It is shown that the ITSC fault introduces variation in the current response, which can be used to calculate the number of shorted turns under zero fault resistance assumption. Using this practical procedure, the fault severity can be estimated directly in a straight-forward manner. In other words, the severity estimation for a given machine can be done without complex machine modeling or experiments on ITSC prototype with multiple taps. The findings in this paper are essential for a comprehensive solution including fault mitigation algorithms and postfault operations. In order to verify the findings, a three-phase equivalent circuit model supported by finite element analysis results is used to take saturation and space harmonics into account. In addition, experimental results are presented to demonstrate the validity and practicability of the severity estimation.