Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Commutators, Lefschetz fibrations and the signatures of surface bundles
Date
2002-09-01
Author
Endo, H
Korkmaz, Mustafa
Kotschick, D
Ozbagci, B
Stipsicz, A
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
186
views
0
downloads
Cite This
We construct examples of Lefschetz fibrations with prescribed singular fibers. By taking differences of pairs of such fibrations with the same singular fibers, we obtain new examples of surface bundles over surfaces with nonzero signature. From these we derive new upper bounds for the minimal genus of a surface representing a given element in the second homology of a mapping class group.
Subject Keywords
Geometry and Topology
URI
https://hdl.handle.net/11511/39021
Journal
TOPOLOGY
DOI
https://doi.org/10.1016/s0040-9383(01)00011-8
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
There is no domain representable dense proper subsemigroup of a topological group
Önal, Süleyman (Elsevier BV, 2017-02-01)
We prove that the only domain representable dense subsemigroup of a topological group is itself. Consequently, we obtain that every domain representable subgroup of a topological group is closed.
Equivariant cross sections of complex Stiefel manifolds
Onder, T (Elsevier BV, 2001-01-16)
Let G be a finite group and let M be a unitary representation space of G. A solution to the existence problem of G-equivariant cross sections of the complex Stiefel manifold W-k(M) of unitary k-frames over the unit sphere S(M) is given under mild restrictions on G and on fixed point sets. In the case G is an even ordered group, some sufficient conditions for the existence of G-equivariant real frame fields on spheres with complementary G-equivariant complex structures are also obtained, improving earlier re...
On endomorphisms of surface mapping class groups
Korkmaz, Mustafa (Elsevier BV, 2001-05-01)
In this paper, we prove that every endomorphism of the mapping class group of an orientable surface onto a subgroup of finite index is in fact an automorphism.
An obstruction to the existence of real projective structures
Coban, Hatice (Elsevier BV, 2019-09-15)
In this short note, we give an obstruction to obtain examples of higher dimensional manifolds with infinite fundamental groups, including the infinite cyclic group Z, admitting no real projective structure.
Automorphisms of complexes of curves on odd genus nonorientable surfaces
Atalan Ozan, Ferihe; Korkmaz, Mustafa; Department of Mathematics (2005)
Let N be a connected nonorientable surface of genus g with n punctures. Suppose that g is odd and g + n > 6. We prove that the automorphism group of the complex of curves of N is isomorphic to the mapping class group M of N.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Endo, M. Korkmaz, D. Kotschick, B. Ozbagci, and A. Stipsicz, “Commutators, Lefschetz fibrations and the signatures of surface bundles,”
TOPOLOGY
, pp. 961–977, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39021.