Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Transformation-based metamaterials to eliminate the staircasing error in the finite difference time domain method
Date
2012-07-01
Author
Ozgun, Ozlem
Kuzuoğlu, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
210
views
0
downloads
Cite This
A coordinate transformation technique is introduced for the finite difference time domain method to alleviate the effects of errors introduced by the staircasing approximation of curved geometries that do not conform to a Cartesian grid. An anisotropic metamaterial region, which is adapted to the Cartesian grid and designed by the coordinate transformation technique, is constructed around the curved boundary of the object, and the region occupied between the curved boundary and the inner boundary of the anisotropic metamaterial layer is discarded. The technique is validated via several numerical simulations. (c) 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 22:530540, 2012.
Subject Keywords
Electrical and Electronic Engineering
,
Computer Graphics and Computer-Aided Design
,
Computer Science Applications
URI
https://hdl.handle.net/11511/39065
Journal
INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING
DOI
https://doi.org/10.1002/mmce.20642
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Monte Carlo analysis of ridged waveguides with transformation media
Ozgun, Ozlem; Kuzuoğlu, Mustafa (Wiley, 2013-07-01)
A computational model is presented for Monte Carlo simulation of waveguides with ridges, by combining the principles of transformation electromagnetics and the finite methods (such as finite element or finite difference methods). The principle idea is to place a transformation medium around the ridge structure, so that a single and easy-to-generate mesh can be used for each realization of the Monte Carlo simulation. Hence, this approach leads to less computational resources. The technique is validated by me...
Discretization of Parametrizable Signal Manifolds
Vural, Elif (Institute of Electrical and Electronics Engineers (IEEE), 2011-12-01)
Transformation-invariant analysis of signals often requires the computation of the distance from a test pattern to a transformation manifold. In particular, the estimation of the distances between a transformed query signal and several transformation manifolds representing different classes provides essential information for the classification of the signal. In many applications, the computation of the exact distance to the manifold is costly, whereas an efficient practical solution is the approximation of ...
Effects of using different boundary conditions and computational domain dimensions on modeling and simulations of periodic metamaterial arrays in microwave frequencies
Turkmen, Oznur; EKMEKÇİ, Evren; Sayan, Gönül (Wiley, 2013-07-01)
This article aims to demonstrate the effects of using different boundary conditions and different computational volume dimensions in numerical simulations of periodic metamaterial arrays. A double band metamaterial unit cell design will be utilized to show that use of different boundary conditions may result in simulation of dissimilar periodic array topologies with completely different electromagnetic responses. It will also be shown that dimensions of the computational volume may strongly affect the overa...
Non-destructive recognition of dielectric coated conducting objects by using WD type time-frequency transformation and PCA-based fusion
Sayan, Gönül (Wiley, 2013-07-01)
This article demonstrates the applications of a non-destructive electromagnetic target recognition method, called Wigner distribution-principal component analysis (WD-PCA) method, to dielectric coated conducting spheres. These spheres are chosen to be highly similar having the same overall size but slightly different permittivity and thickness values in coating layers. Four different classifiers are simulated by using the WD-PCA method for varying sizes of object libraries under different noise conditions. ...
A Distributed Heuristic Algorithm for the Rectilinear Steiner Minimal Tree Problem
Cinel, Sertac; Bazlamaçcı, Cüneyt Fehmi (Institute of Electrical and Electronics Engineers (IEEE), 2008-11-01)
Rectilinear Steiner minimal tree (RSMT) problem finds a minimum length tree that interconnects a given set of points by only horizontal and vertical line segments and by using extra points if necessary. In this paper, to speedup the RSMT construction, two recently developed successful heuristic algorithms, namely rectilinear steiner tree (RST) by Zhou and hatched greedy algorithm (BGA) by Kahng et al., have been used as the basis. Following a slight modification on RST, which led to a nonrecursive and a con...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Ozgun and M. Kuzuoğlu, “Transformation-based metamaterials to eliminate the staircasing error in the finite difference time domain method,”
INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING
, pp. 530–540, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39065.