Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Active role of the support in NOx storage and reductioncatalytic systems
Date
2015-11-15
Author
Tek, Mustafa
Toffoli, Hande
Toffoli, Daniele
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
50
views
0
downloads
Cite This
We present first-principles density functional theory calculations of the adsorption properties of NO2 and SO2 on isolated (BaO)(n) (n = 1, 2, 4, 6, 8, 9) clusters as well as on small BaO clusters ((BaO)(n) with n = 1, 2, 4) supported on the anatase TiO2(001) surface. The TiO2 support influences binding indirectly by enhancing the electron donation from the BaO clusters to both chemisorbed NO2 and the support. This support-mediated increase in stability is not observed for SO2. We describe in detail and highlight the role played by TiO2 on the charge transfer mechanism, which can be used to control the catalytic properties of the active components of nitrogen storage and reduction catalytic systems. The relatively larger activity of the supported BaO clusters towards NO2 adsorption in comparison to SO2 could in principle offer protection against sulfur poisoning.
Subject Keywords
Ab-initio
,
Sox adsorption
,
Bao
,
Catalyst
,
Behavior
,
Morphology
,
Constants
URI
https://hdl.handle.net/11511/39322
Journal
APPLIED SURFACE SCIENCE
DOI
https://doi.org/10.1016/j.apsusc.2015.08.002
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
First-Principles Investigation of NOx and SOx Adsorption on Anatase-Supported BaO and Pt Overlayers
Hummatov, Ruslan; GÜLSEREN, Oğuz; ÖZENSOY, EMRAH; Toffoli, Daniele; Toffoli, Hande (2012-03-15)
We present a density functional theory investigation of the adsorption properties of NO and NO2 as well as SO2 and SO3 on BaO and Pt overlayers on anatase TiO2(001) surface. Mono layers, bilayers, and trilayers of BaO grow without strain-induced large scale reconstructions. While the bilayer and trilayer preserve, to a large extent, the NO2 adsorption characteristics of the clean BaO(100) surface, the effect of the support is evident in SO2 and SO3 adsorption energies, which are somewhat reduced with respec...
Quantum chemical calculations of warfarin sodium, warfarin and its metabolites
Tekin, Emine Deniz (Calisir); ERKOÇ, Figen; YILDIZ, İLKAY; Erkoç, Şakir (2008-07-01)
The structural, vibrational and electronic properties of warfarin sodium, warfarin and its metabolites have been investigated theoretically by performing the molecular mechanics (MM+ force field), the semi-empirical self-consistent-field molecular-orbital (AM1), and density functional theory calculations. The geometry of the molecules have been optimized, the vibrational dynamics and the electronic properties of the molecules have been calculated in their ground state in gas phase.
Adsorption of water and ammonia on TiO2-anatase cluster models
Önal, Işık; Senkan, Selim (2006-06-15)
Density functional theory (DFT) calculations performed at B3LYP/6-31G** level are employed to study water and ammonia adsorption and dissociation on (101) and (001) TiO2 anatase surfaces both represented by totally fixed and partially relaxed Ti2O9H10 cluster models. PM3 semiempirical calculations were also conducted both on Ti2O9H10 and Ti9O33H30 clusters in order to assess the effect of cluster size. Following dissociation, the adsorption of H2O and NH3 by H-bonding on previously H2O and NH3 dissociated s...
Theoretical investigation of quercetin and its radical isomers
Erkoc, E; Erkoc, F; Keskin, N (Elsevier BV, 2003-08-01)
The structural and electronic properties of quercetin and its five radical isomers have been investigated theoretically by performing semi-empirical molecular orbital theory calculations. The geometry of the systems have been optimized and the electronic properties of the systems considered have been calculated by semi-empirical self-consistend-field molecular orbital theory at the level AM1 within UHF formalism in their ground state. Conclusions have been drawn by comparing with experimental results.
Progressive structural and electronic properties of nano-structured carbon atomic chains
Usanmaz, D.; Srivastava, G. P. (AIP Publishing, 2013-05-21)
Ab initio calculations, based on the planewave pseudopotential method and the density functional theory, have been reported on the changes in the electronic and structural properties of short carbon atomic chains held rigidly between hydrogenated thin armchair graphene nanoribbons (N-a-AGNR) of dimer line numbers N-a = 4 and 5. We have considered chains of several lengths (n = 4-9 atoms) and with different forms of attachment with the AGNRs. It is found that odd-numbered chains are metallic in nature, with ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Tek, H. Toffoli, and D. Toffoli, “Active role of the support in NOx storage and reductioncatalytic systems,”
APPLIED SURFACE SCIENCE
, pp. 1295–1305, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39322.