Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Involutions in locally finite groups
Date
2004-04-01
Author
Kuzucuoğlu, Mahmut
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
105
views
0
downloads
Cite This
The paper deals with locally finite groups G having an involution phi such that C-G(phi) is of finite rank. The following theorem gives a very detailed description of such groups.
Subject Keywords
General Mathematics
URI
https://hdl.handle.net/11511/39377
Journal
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES
DOI
https://doi.org/10.1112/s0024610703005015
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
On equivariant Serre problem for principal bundles
Biswas, Indranil; Dey, Arijit; Poddar, Mainak (World Scientific Pub Co Pte Lt, 2018-08-01)
Let E-G be a Gamma-equivariant algebraic principal G-bundle over a normal complex affine variety X equipped with an action of Gamma, where G and Gamma are complex linear algebraic groups. Suppose X is contractible as a topological Gamma-space with a dense orbit, and x(0) is an element of X is a Gamma-fixed point. We show that if Gamma is reductive, then E-G admits a Gamma-equivariant isomorphism with the product principal G-bundle X x rho E-G(x(0)), where rho : Gamma -> G is a homomorphism between algebraic...
Stability criterion for second order linear impulsive differential equations with periodic coefficients
Guseinov, G. Sh.; Zafer, Ağacık (Wiley, 2008-01-01)
In this paper we obtain instability and stability criteria for second order linear impulsive differential equations with periodic coefficients. Further, a Lyapunov type inequality is also established. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lefschetz Fibrations and an Invariant of Finitely Presented Groups
Korkmaz, Mustafa (Oxford University Press (OUP), 2009-01-01)
Every finitely presented group is the fundamental group of the total space of a Lefschetz fibration. This follows from results of Gompf and Donaldson, and was also proved by Amoros-Bogomolov-Katzarkov-Pantev. We give another proof by providing the monodromy explicitly. We then define the genus of a finitely presented group Gamma to be the minimal genus of a Lefschetz fibration with fundamental group Gamma. We also give some estimates of the genus of certain groups.
PERTURBATIONS OF NONASSOCIATIVE BANACH ALGEBRAS
Dosi, Anar (Rocky Mountain Mathematics Consortium, 2009-01-01)
In this note we prove that if either 21 is a Banach-Jordan algebra or a Banach-Lie algebra then all perturbations of the multiplication in 21 give algebras topologically isomorphic with 21 whenever certain small-dimension cohomology groups associated with 21 are vanishing.
NONCOMMUTATIVE MACKEY THEOREM
Dosi, Anar (World Scientific Pub Co Pte Lt, 2011-04-01)
In this note we investigate quantizations of the weak topology associated with a pair of dual linear spaces. We prove that the weak topology admits only one quantization called the weak quantum topology, and that weakly matrix bounded sets are precisely the min-bounded sets with respect to any polynormed topology compatible with the given duality. The technique of this paper allows us to obtain an operator space proof of the noncommutative bipolar theorem.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Kuzucuoğlu, “Involutions in locally finite groups,”
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES
, pp. 306–316, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39377.