Enhancing positioning accuracy of GPS/INS system during GPS outages utilizing artificial neural network

Kaygisiz, Burak H.
Erkmen, Aydan Müşerref
Erkmen, İsmet
Integrated global positioning system and inertial navigation system (GPS/INS) have been extensively employed for navigation purposes. However, low-grade GPS/INS systems generate erroneous navigation solutions in the absence of GPS signals and drift very fast. We propose in this paper a novel method to integrate a low-grade GPS/INS with an artificial neural network (ANN) structure. Our method is based on updating the INS in a Kalman filter structure using ANN during GPS outages. This study focuses on the design, implementation and integration of such an ANN employing an optimum multilayer perceptron (MLP) structure with relevant number of layers/perceptrons and an appropriate learning. As a result, a land test is conducted with the proposed ANN + GPS/INS system and we here provide the system performance with the land trials.


Terrain referenced navigation of an aircraft using particle filter
Turan, Burak; Kutay, Ali Türker; Department of Aerospace Engineering (2017)
The need for Terrain Referenced Navigation (TRN) arises when Global Navigation Satellite System (GNSS) signals are unavailable. In recent years, research on the application of TRN to aerial and underwater vehicles has been increased rapidly with the developments in the accuracy of digital terrain elevation database (DTED). Since the land and sea floor profiles are inherently nonlinear, TRN becomes a nonlinear estimation problem. Because of the highly nonlinear and non-Gaussian problem, linear or linearized ...
Formation preserving path finding in 3-D terrains
Bayrak, Ali Galip; Polat, Faruk (Springer Science and Business Media LLC, 2012-03-01)
Navigation of a group of autonomous agents that are required to maintain a formation is a challenging task which has not been studied much especially in 3-D terrains. This paper presents a novel approach to collision free path finding of multiple agents preserving a predefined formation in 3-D terrains. The proposed method could be used in many areas like navigation of semi-automated forces (SAF) at unit level in military simulations and non-player characters (NPC) in computer games. The proposed path findi...
Estimation of Deterministic and Stochastic IMU Error Parameters
Unsal, Derya; Demirbaş, Kerim (2012-04-26)
Inertial Measurement Units, the main component of a navigation system, are used in several systems today. IMU's main components, gyroscopes and accelerometers, can be produced at a lower cost and higher quantity. Together with the decrease in the production cost of sensors it is observed that the performances of these sensors are getting worse. In order to improve the performance of an IMU, the error compensation algorithms came into question and several algorithms have been designed. Inertial sensors conta...
Enhancing GPS positioning accuracy from the generation of ground-truth reference points for on-road urban navigation
Bshara, Mussa; Orguner, Umut; Gustafsson, Fredrik; Van Biesen, Leo (2012-09-14)
The global positioning system (GPS) is a Global Navigation Satellite System (GNSS) uses a constellation of between 24 and 32 Medium Earth Orbit satellites that transmit precise microwave signals, which enable GPS receivers to determine their current location, the time, and their velocity [1]. Initially, the GPS was developed for military applications, but very quickly became the most used technology in positioning even for end-user applications run by individuals with no technical skills. GPS reading are us...
Autonomous quadrotor flight with vision-based obstacle avoidance in virtual environment
Eresen, Aydin; Imamoglu, Nevrez; Efe, Mehmet Onder (Elsevier BV, 2012-01-01)
In this paper, vision-based autonomous flight with a quadrotor type unmanned aerial vehicle (UAV) is presented. Automatic detection of obstacles and junctions are achieved by the use of optical flow velocities. Variation in the optical flow is used to determine the reference yaw angle. Path to be followed is generated autonomously and the path following process is achieved via a PID controller operating as the low level control scheme. Proposed method is tested in the Google Earth (R) virtual environment fo...
Citation Formats
B. H. Kaygisiz, A. M. Erkmen, and İ. Erkmen, “Enhancing positioning accuracy of GPS/INS system during GPS outages utilizing artificial neural network,” NEURAL PROCESSING LETTERS, pp. 171–186, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39556.