Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Magnetohydrodynamic Flow in a Rectangular Duct
Date
2017-08-25
Author
Bozkaya, Canan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
350
views
0
downloads
Cite This
The magnetohydrodynamic (MHD) flow of an incompressible, viscous and electrically conducting fluid in a rectangular duct with insulated and perfectly conducting walls is investigated numerically in the presence of hydrodynamic slip. The flow is fully developed and driven by a constant pressure gradient in the axial direction under the effect of an externally applied uniform and inclined magnetic field. A direct boundary element method (BEM) using a fundamental solution which enables to treat the governing MHD flow equations in their original coupled form is employed and the validity of the code is also ascertained. The numerical simulations are carried out for several values of slip length, Hartmann number and the inclination angle of the external magnetic field. It is well-observed from the equivelocity and induced current lines that the velocity increases through the duct and the Hartmann layers weaken while the side layers become thicker with an increase in slip length especially at low values of Hartmann number irrespective of the conductivity of the walls.
Subject Keywords
MHD
,
Duct flow
,
BEM
URI
https://hdl.handle.net/11511/39639
DOI
https://doi.org/10.1007/978-3-319-99719-3_16
Conference Name
International Conference on Applied Mathematics, Modeling and Computational Science
Collections
Department of Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
Magnetohydrodynamic Flow in a Rectangular Duct
Bozkaya, Canan (2018-12-02)
The magnetohydrodynamic (MHD) flow of an incompressible, viscous and electrically conducting fluid in a rectangular duct with insulated and perfectly conducting walls is investigated numerically in the presence of hydrodynamic slip. The flow is fully developed and driven by a constant pressure gradient in the axial direction under the effect of an externally applied uniform and inclined magnetic field. A direct boundary element method (BEM) using a fundamental solution which enables to treat the governing M...
Effect of boundary conditions on magnetohydrodynamics duct flow
Bozkaya, Canan (2017-12-01)
The magnetohydrodynamic flow of an incompressible, viscous and electrically conducting fluid is investigated numerically in a channel of either rectangular or semi-infinite cross-section with several types of boundary conditions involving walls of variable conductivity in the presence of hydrodynamic slip. The flow is fully developed and driven by a constant pressure gradient in the axial direction under a uniform external inclined magnetic field. The governing differential equations coupled in velocity and...
The BEM Solutions of MHD Flow and Heat Transfer in a Rectangular Duct with Temperature Dependent Viscosity
Kaya, Elif Ebren; Tezer, Münevver (2019-01-01)
The steady, laminar, fully developed magnetohydrodynamic (MHD) flow of an incompressible, electrically conducting fluid with temperature dependent viscosity is studied in a rectangular duct together with its heat transfer. Although the induced magnetic field is neglected due to the small Reynolds number, the Hall effect, viscous and Joule dissipations are taken into consideration. The momentum and the energy equations are solved iteratively. Firstly, the momentum equation is solved by using the boundary ele...
The application of BEM to MHD flow and heat transfer in a rectangular duct with temperature dependent viscosity
Ebren Kaya, Elif; Tezer, Münevver ( EC LTD.; 2018-07-11)
The steady, laminar, fully developed MHD flow of an incompressible, electrically conducting fluid with temperature dependent viscosity is studied in a rectangular duct together with its heat transfer. Although the induced magnetic field is neglected due to the small Reynolds number, the Hall effect, viscous and Joule dissipations are taken into consideration. The momentum equation for the pipe-axis velocity and the energy equation are solved iteratively. Firstly, the momentum equation is solved by using the...
BEM solution to magnetohydrodynamic flow in a semi-infinite?duct
Bozkaya, Canan; Tezer, Münevver (2012-09-30)
We consider the magnetohydrodynamic flow that is laminar and steady of a viscous, incompressible, and electrically conducting fluid in a semi-infinite duct under an externally applied magnetic field. The flow is driven by the current produced by a pressure gradient. The applied magnetic field is perpendicular to the semi-infinite walls that are kept at the same magnetic field value in magnitude but opposite in sign. The wall that connects the two semi-infinite walls is partly non-conducting and partly condu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Bozkaya, “Magnetohydrodynamic Flow in a Rectangular Duct,” Waterloo, Kanada, 2017, vol. 259, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39639.