A Framework for Machine Vision based on Neuro-Mimetic Front End Processing and Clustering

2014-10-03
Akbaş, Emre
ECKSTEIN, Miguel
MADHOW, Upamanyu
Convolutional deep neural nets have emerged as a highly effective approach for machine vision, but there are a number of open issues regarding training (e.g., a large number of model parameters to be learned, and a number of manually tuned algorithm parameters) and interpretation (e.g., geometric interpretations of neurons at various levels of the hierarchy). In this paper, our goal is to explore alternative convolutional architectures which are easier to interpret and simpler to implement. In particular, we investigate a framework that combines a front end based on the known neuroscientific findings about the visual pathway, together with unsupervised feature extraction based on clustering. Supervised classification, using a generic radial basis function (RBF) support vector machine (SVM), is applied at the end. We obtain competitive classification results on standard image databases, beating the state of the art for NORB (uniform-normalized) and approaching it for MNIST.
52nd Annual Allerton Conference on Communication, Control, and Computing

Suggestions

A temporal neural network model for constructing connectionist expert system knowledge bases
Alpaslan, Ferda Nur (Elsevier BV, 1996-04-01)
This paper introduces a temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems. The neural network model has a multi-layer structure, i.e. the number of layers is not limited. Also, the model has the flexibility of defining output nodes in any layer. This is especially important for connectionist expert system applications.
A finite field framework for modeling, analysis and control of finite state automata
Reger, Johann; Schmidt, Klaus Verner (Informa UK Limited, 2004-09-01)
In this paper, we address the modeling, analysis and control of finite state automata, which represent a standard class of discrete event systems. As opposed to graph theoretical methods, we consider an algebraic framework that resides on the finite field F-2 which is defined on a set of two elements with the operations addition and multiplication, both carried out modulo 2. The key characteristic of the model is its functional completeness in the sense that it is capable of describing most of the finite st...
A pattern classification approach for boosting with genetic algorithms
Yalabık, Ismet; Yarman Vural, Fatoş Tunay; Üçoluk, Göktürk; Şehitoğlu, Onur Tolga (2007-11-09)
Ensemble learning is a multiple-classifier machine learning approach which produces collections and ensembles statistical classifiers to build up more accurate classifier than the individual classifiers. Bagging, boosting and voting methods are the basic examples of ensemble learning. In this study, a novel boosting technique targeting to solve partial problems of AdaBoost, a well-known boosting algorithm, is proposed. The proposed system finds an elegant way of boosting a bunch of classifiers successively ...
A parallel ant colony optimization algorithm based on crossover operation
Kalınlı, Adem; Sarıkoç, Fatih (Springer, 2018-11-01)
In this work, we introduce a new parallel ant colony optimization algorithm based on an ant metaphor and the crossover operator from genetic algorithms.The performance of the proposed model is evaluated usingwell-known numerical test problems and then it is applied to train recurrent neural networks to identify linear and nonlinear dynamic plants. The simulation results are compared with results using other algorithms.
A neuro-fuzzy MAR algorithm for temporal rule-based systems
Sisman, NA; Alpaslan, Ferda Nur; Akman, V (1999-08-04)
This paper introduces a new neuro-fuzzy model for constructing a knowledge base of temporal fuzzy rules obtained by the Multivariate Autoregressive (MAR) algorithm. The model described contains two main parts, one for fuzzy-rule extraction and one for the storage of extracted rules. The fuzzy rules are obtained from time series data using the MAR algorithm. Time-series analysis basically deals with tabular data. It interprets the data obtained for making inferences about future behavior of the variables. Fu...
Citation Formats
E. Akbaş, M. ECKSTEIN, and U. MADHOW, “A Framework for Machine Vision based on Neuro-Mimetic Front End Processing and Clustering,” presented at the 52nd Annual Allerton Conference on Communication, Control, and Computing, Allerton, IL, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39770.