Integrated Optical Modulator Based on Transition between Photonic Bands

Gövdeli, Alperen
Sarihan, Murat Can
Karaca, Utku
Kocaman, Serdar
An area efficient novel optical modulator with low operation voltage is designed based on integrated Mach-Zehnder Interferometer with a photonic crystal slab structure as the phase shifter. Plasma dispersion effect is utilized so that photonic band-to-band transition occurs at the operating frequency leading to a high index change (Delta n = similar to 4) for pi-phase shift on the modulator. This approach reduces the phase shifter length to a few micrometers (similar to 5 mu m) in a silicon on insulator platform and operating voltage required is around 1 V. Low voltage together with short optical interaction length decrease optical losses and power consumption during modulation process providing a great opportunity for size and system cost optimization.


Integrated optical modulators with zero index metamaterials based on photonic crystal slab waveguides
Yildirim, Mustafa; GÖVDELİ, ALPEREN; Kocaman, Serdar (2019-01-01)
A novel integrated optical modulator design is presented using zero index metamaterial-based Mach-Zehnder Interferometer with photonic crystal phase shifters. The phase modulation relies on the shift between the photonic bandgaps having non-zero and zero effective refractive indices. A small change in the bulk index results in an effective index change between the arms of the MZI due to the disturbance of the band structure. Thus, such a structure provides a new approach for phase modulation on integrated o...
Frequency tunable microstrip patch antenna using RF MEMS technology
Erdıl, Emre; Topallı, Kagan; Unlu, Mehmet; Aydın Çivi, Hatice Özlem; Akın, Tayfun (2007-04-01)
A novel reconfigurable microstrip patch antenna is presented that is monolithically integrated with RF microelectromechanical systems (MEMS) capacitors for tuning the resonant frequency. Reconfigurability of the operating frequency of the microstrip patch antenna is achieved by loading it with a coplanar waveguide (CPW) stub on which variable MEMS capacitors are placed periodically. MEMS capacitors are implemented with surface micromachining technology, where a 1-mu m thick aluminum structural layer is plac...
Band-to-Band Transition Based On-Chip Optical Modulator
Gövdeli, Alperen; Sarihan, Murat Can; Karaca, Utku; Kocaman, Serdar (2018-10-04)
Photonic crystal slab phase shifter based, area efficient and low operation voltage optical modulator design is presented. Required index difference between the Mach-Zehnder interferometer arms of the proposed modulator comes from the photonic band transition.
Design of a dual polarized low profile antenna for microwave brain imaging
Üçel, Kaan; Alatan, Lale; Department of Electrical and Electronics Engineering (2022-5-9)
In this thesis, a low profile, low cost, wide band (0.9-2GHz) dual linearly polarized printed dipole antenna is designed to be used in microwave brain imaging systems. Dual polarization feature offers superior data acquisition through polarization diversity for better image quality. Starting from a simple printed dipole, antenna structure is modified step by step to meet these design requirements. Since a conductive surface in close vicinity of the antenna affects antenna performance, in order to obtain uni...
Optical and mechanical properties of fiber-reinforced ceramic matrix optically transparent composites
Dericioğlu, Arcan Fehmi (2001-12-01)
The idea of increasing the fracture resistance of optically transparent Ceramics by incorporation of continuous fibers with a small expense in their light transmission was applied to a SiC (SCS-6) fiber-reinforced magnesium aluminate spinel matrix composite. It was found that although there is a slight decrease in the light transmittance of the transparent monolithic matrix with increasing fiber volume fraction, a fail-safe mechanism appeared in the composite by the bridging effect of the intact fibers
Citation Formats
A. Gövdeli, M. C. Sarihan, U. Karaca, and S. Kocaman, “Integrated Optical Modulator Based on Transition between Photonic Bands,” SCIENTIFIC REPORTS, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: