Behavior-Based Approach for Cooperative Control of a Haptic-driven Mobile Robot

2019-01-01
This paper addresses the obstacle avoidance performance of a tele-operated wheeled mobile robot. The robot is equipped with both a camera and a laser range sensor to acquire the necessary data from the surrounding. The communication between the operator and the robot is established by means of a force-feedback haptic joystick. In order to tackle go-to-goal and obstacle avoidance tasks, behavior-based control methodology has been used. The results of the study show that the proposed cooperative control approach is superior to both fully manual and fully autonomous behavior-based control in terms of number of collisions, time consumed to accomplish the tasks and also the cognitive pressure on the operator.

Suggestions

Obstacle avoidance control for a human-operated mobile robot
Mohamadi Nazarabad, Yaser; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2019)
In this study, the collaboration between human operator and a wheeled mobile robot in obstacle avoidance scenario is addressed. The tele-operation task is completed by integrating a force-feedback joystick to the human-robot system. The force-feedback joystick is able to apply forces on human operator and establish a bi-directional communication interface between the operator and the robot. Depending on levels of autonomy assigned to the robot, the operator and the robot are assigned with different roles du...
Improving the accuracy of a mobile robot for localization and mapping of an unknown environment
Gümrükcü, Gülşah; Konukseven, Erhan İlhan; Department of Mechanical Engineering (2003)
This thesis deals with sensor based motion planning of a mobile robot for localization in an unknown environment. Using the developed algorithm the robot may construct the map (GVG) of any bounded environment, and the minimum distance between any two locations in the mapped environment can be determined. In addition, the accuracy of the robot, facing dead-reckoning error can be improved. With this study, the mobile robot finds the optimum path between any two locations in any bounded environment and traces ...
Control of a differentially driven mobile robot using radial basis function based neural networks
Bayar, Gökhan; Konukseven, Erhan İlhan; Buǧra Koku, A. (2008-12-01)
This paper proposes the use of radial basis function neural networks approach to the solution of a mobile robot orientation adjustment using reinforcement learning. In order to control the orientation of the mobile robot, a neural network control system has been constructed and implemented. Neural controller has been charged to enhance the control system by adding some degrees of award. Making use of the potential of neural networks to learn the relationships, the desired reference orientation and the error...
Mobile Robot Heading Adjustment Using Radial Basis Function Neural Networks Controller and Reinforcement Learning
BAYAR, GÖKHAN; Konukseven, Erhan İlhan; Koku, Ahmet Buğra (2008-10-28)
This paper proposes radial basis function neural networks approach to the Solution of a mobile robot heading adjustment using reinforcement learning. In order to control the heading of the mobile robot, the neural networks control system have been constructed and implemented. Neural controller has been charged to enhance the control system by adding some degrees of strength. It has been achieved that neural networks system can learn the relationship between the desired directional heading and the error posi...
Proxy Based-Fuzzy Sliding Mode Controller for Wheeled Mobile Robot Magellan Pro
Turhan, Hasan İhsan (2015-07-31)
In this paper, proxy based - fuzzy sliding mode control (PB-FSMC) concept and application of this new concept on wheeled mobile robot (WMR) Magellan Pro are presented. Kinematic and dynamic models of wheeled mobile robot are given and controller design for these models are developed and explained in detail. In order to examine feasibility and validity of the designed controller, PB-FSMC is compared with the fuzzy sliding mode control (FSMC) technique in a simulation environment.
Citation Formats
Y. Mohamadi, E. İ. Konukseven, and A. B. Koku, “Behavior-Based Approach for Cooperative Control of a Haptic-driven Mobile Robot,” 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39974.