Regression analysis with a dtochastic design variable

2006-04-01
Sazak, HS
Tiku, ML
İslam, Muhammed Qamarul
In regression models, the design variable has primarily been treated as a nonstochastic variable. In numerous situations, however, the design variable is stochastic. The estimation and hypothesis testing problems in such situations are considered. Real life examples are given.
INTERNATIONAL STATISTICAL REVIEW

Suggestions

Multiple linear regression model with stochastic design variables
İslam, Muhammed Qamarul (Informa UK Limited, 2010-01-01)
In a simple multiple linear regression model, the design variables have traditionally been assumed to be non-stochastic. In numerous real-life situations, however, they are stochastic and non-normal. Estimators of parameters applicable to such situations are developed. It is shown that these estimators are efficient and robust. A real-life example is given.
Estimation and hypothesis testing in multivariate linear regression models under non normality
İslam, Muhammed Qamarul (Informa UK Limited, 2017-01-01)
This paper discusses the problem of statistical inference in multivariate linear regression models when the errors involved are non normally distributed. We consider multivariate t-distribution, a fat-tailed distribution, for the errors as alternative to normal distribution. Such non normality is commonly observed in working with many data sets, e.g., financial data that are usually having excess kurtosis. This distribution has a number of applications in many other areas of research as well. We use modifie...
Linear contrasts in experimental design with non-identical error distributions
Senoglu, B; Tiku, ML (Wiley, 2002-01-01)
Estimation of linear contrasts in experimental design, and testing their assumed values, is considered when the error distributions from block to block are not necessarily identical. The normal-theory solutions are shown to have low efficiencies as compared to the solutions presented here.
Representation of Multiplicative Seasonal Vector Autoregressive Moving Average Models
Yozgatlıgil, Ceylan (Informa UK Limited, 2009-11-01)
Time series often contain observations of several variables and multivariate time series models are used to represent the relationship between these variables. There are many studies on vector autoregressive moving average (VARMA) models, but the representation of multiplicative seasonal VARMA models has not been seriously studied. In a multiplicative vector model, such as a seasonal VARMA model, the representation is not unique because of the noncommutative property of matrix multiplication. In this articl...
Bayesian semiparametric models for nonignorable missing mechanisms in generalized linear models
Kalaylıoğlu Akyıldız, Zeynep Işıl (Informa UK Limited, 2013-08-01)
Semiparametric models provide a more flexible form for modeling the relationship between the response and the explanatory variables. On the other hand in the literature of modeling for the missing variables, canonical form of the probability of the variable being missing (p) is modeled taking a fully parametric approach. Here we consider a regression spline based semiparametric approach to model the missingness mechanism of nonignorably missing covariates. In this model the relationship between the suitable...
Citation Formats
H. Sazak, M. Tiku, and M. Q. İslam, “Regression analysis with a dtochastic design variable,” INTERNATIONAL STATISTICAL REVIEW, pp. 77–88, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40268.