Yang-Mills solutions on Euclidean Schwarzschild space

Download
2002-04-15
We show that the apparently periodic Charap-Duff Yang-Mills "instantons" in time-compactified Euclidean Schwarzschild space are actually time independent. For these solutions, the Yang-Mills potential is constant along the time direction (no barrier) and therefore, there is no tunneling. We also demonstrate that the solutions found to date are three-dimensional monopoles and dyons. We conjecture that there are no time-dependent solutions in the Euclidean Schwarzschild background.
PHYSICAL REVIEW D

Suggestions

Concrete description of CD0(K)-spaces as C(X)-spaces and its applications
Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We prove that for a compact Hausdorff space K without isolated points, CD0(K) and C(K x {0, 1}) are isometrically Riesz isomorphic spaces under a certain topology on K x {0, 1}. Moreover, K is a closed subspace of K x {0, 1}. This provides concrete examples of compact Hausdorff spaces X such that the Dedekind completion of C(X) is B(S) (= the set of all bounded real-valued functions on S) since the Dedekind completion of CD0(K) is B(K) (CD0(K, E) and CDw (K, E) spaces as Banach lattices).
Finite type points on subsets of C-n
Yazıcı, Özcan (Elsevier BV, 2020-07-01)
In [4], D'Angelo introduced the notion of points of finite type for a real hypersurface M subset of C-n and showed that the set of points of finite type in M is open. Later, Lamel-Mir [8] considered a natural extension of D'Angelo's definition for an arbitrary set M subset of C-n. Building on D'Angelo's work, we prove the openness of the set of points of finite type for any subset M subset of C-n.
Loop Representation of Wigner’s Little Groups
Başkal, Sibel; Kim, Young S.; Noz, Marilyn E (MDPI AG, 2017-6-23)
Wigner's little groups are the subgroups of the Lorentz group whose transformations leave the momentum of a given particle invariant. They thus define the internal space-time symmetries of relativistic particles. These symmetries take different mathematical forms for massive and for massless particles. However, it is shown possible to construct one unified representation using a graphical description. This graphical approach allows us to describe vividly parity, time reversal, and charge conjugation of the ...
Affine Equivalency and Nonlinearity Preserving Bijective Mappings over F-2
Sertkaya, Isa; Doğanaksoy, Ali; Uzunkol, Osmanbey; Kiraz, Mehmet Sabir (2014-09-28)
We first give a proof of an isomorphism between the group of affine equivalent maps and the automorphism group of Sylvester Hadamard matrices. Secondly, we prove the existence of new nonlinearity preserving bijective mappings without explicit construction. Continuing the study of the group of nonlinearity preserving bijective mappings acting on n-variable Boolean functions, we further give the exact number of those mappings for n <= 6. Moreover, we observe that it is more beneficial to study the automorphis...
Integral manifolds of differential equations with piecewise constant argument of generalized type
Akhmet, Marat (Elsevier BV, 2007-01-15)
In this paper we introduce a general type of differential equations with piecewise constant argument (EPCAG). The existence of global integral manifolds of the quasilinear EPCAG is established when the associated linear homogeneous system has an exponential dichotomy. The smoothness of the manifolds is investigated. The existence of bounded and periodic solutions is considered. A new technique of investigation of equations with piecewise argument, based on an integral representation formula, is proposed. Ap...
Citation Formats
B. Tekin, “Yang-Mills solutions on Euclidean Schwarzschild space,” PHYSICAL REVIEW D, pp. 0–0, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40285.