Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Distinguishability analysis of an induced current EIT system using discrete coils
Date
2000-07-01
Author
Eyüboğlu, Behçet Murat
Demirbilek, M
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
147
views
0
downloads
Cite This
The distinguishability of a discrete coil induced current electrical impedance tomography system is analysed. The solution methodology of the forward problem of this system is explained. An optimization procedure using this forward problem solution is developed to find optimum currents that maximize the distinguishability. For the concentric inhomogeneity problem, it is shown that the coil currents can be optimized to focus the current density in any desired location, in the field of view. Optimum coil currents under the constraints of limited peak coil currents and limited total power are determined. Examples that demonstrate the performance of the system are presented.
Subject Keywords
Radiological and Ultrasound Technology
,
Radiology Nuclear Medicine and imaging
URI
https://hdl.handle.net/11511/40314
Journal
PHYSICS IN MEDICINE AND BIOLOGY
DOI
https://doi.org/10.1088/0031-9155/45/7/321
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Distinguishability for magnetic resonance-electrical impedance tomography (MR-EIT)
Altunel, Haluk; Eyüboğlu, Behçet Murat; Koksal, Adnan (IOP Publishing, 2007-01-21)
A distinguishability measure is defined for magnetic resonance-electrical impedance tomography (MR-EIT) based on magnetic flux density measurements. This general definition is valid for 2D and 3D structures of any shape. As a specific case, a 2D cylindrical body with concentric inhomogeneity is considered and a bound of the distinguishability is analytically formulated. Distinguishabilities obtained with potential and magnetic flux density measurements are compared.
Experimental results for 2D magnetic resonance electrical impedance tomography (MR-EIT) using magnetic flux density in one direction
Birgul, O; Eyüboğlu, Behçet Murat; Ider, YZ (IOP Publishing, 2003-11-07)
Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Middle East Technical University MRI system. The dc current method used in magnetic resonance current density imaging...
Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns
Birgul, O; Eyüboğlu, Behçet Murat; Ider, YZ (IOP Publishing, 2003-03-07)
Conventional injected-current electrical impedance tomography (EIT) and magnetic resonance imaging (MRI) techniques can be combined to reconstruct high resolution true conductivity images. The magnetic flux density distribution generated by the internal current density distribution is extracted from MR phase images. This information is used to form a fine detailed conductivity image using an Ohm's law based update equation. The reconstructed conductivity image is assumed to differ from the true image by a s...
ESTIMATION OF TISSUE RESISTIVITIES FROM MULTIPLE-ELECTRODE IMPEDANCE MEASUREMENTS
Eyüboğlu, Behçet Murat; WOLF, PD (IOP Publishing, 1994-01-01)
In order to measure in vivo resistivity of tissues in the thorax, the possibility of combining anatomical data extracted from high-resolution images with multiple-electrode impedance measurements, a priori knowledge of the range of tissue resistivities, and a priori data on the instrumentation noise is assessed in this study. A statistically constrained minimum-mean-square error estimator (MIMSEE) that minimizes the effects of linearization errors and instrumentation noise is developed and compared to the c...
Use of a priori information in estimating tissue resistivities - a simulation study
Baysal, U; Eyüboğlu, Behçet Murat (IOP Publishing, 1998-12-01)
Accurate estimation of tissue resistivities in vivo is needed to construct reliable human body volume conductor models in solving forward and inverse bioelectric field problems. The necessary data for the estimation can be obtained by using ht four-electrode impedance measurement technique, usually employed in electrical impedance tomography. In this study, a priori geometrical information with statistical properties of regional resistivities and linearization error as well as instrumentation noise has been...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. M. Eyüboğlu and M. Demirbilek, “Distinguishability analysis of an induced current EIT system using discrete coils,”
PHYSICS IN MEDICINE AND BIOLOGY
, pp. 1997–2009, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40314.