Broadband LWIR and MWIR metamaterial absorbers with a simple design topology: almost perfect absorption and super-octave band operation in MWIR band

2017-07-01
ÜSTÜN, Kadir
Sayan, Gönül
Infrared absorbers are essential structures in the design of thermal emitters and thermal infrared imagers. In this study, we propose simple topologies of wideband metamaterial absorbers operating in the long-wave infrared or in the mid-wave infrared (MWIR) wavelengths of the electromagnetic spectrum where the atmosphere shows transparent behavior. Suggested metamaterial absorbers are mostly thin structures that consist of three functional layers from top to bottom: a periodically patterned metal layer, a planar dielectric layer, and a ground metal layer. The pattern of the top metal layer is four-fold symmetric to guarantee the polarization insensitivity of the absorber under normal incidence of light. In addition, a geometrically simple metamaterial pattern is preferred to facilitate the process of lithography. As titanium is known to be a high-loss metal, it is deliberately used at the top layer of the absorber to increase the overall absorption bandwidth. Highly satisfactory absorber results, such as almost perfect absorption and super-octave band operation are demonstrated, especially in the MWIR region. As oxidation of the top titanium layer may cause performance degradation in long-term use, a design modification is also suggested where a very thin protective coating layer is applied over the titanium metasurface. (C) 2017 Optical Society of America
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS

Suggestions

SWIR nightglow radiation detection around room temperature with depletion-engineered HgCdTe on alternative substrates
Livanelioglu, Can; Ozer, Yigit; Kocaman, Serdar (The Optical Society, 2020-01-01)
Night vision applications utilize the reflected nightglow radiation in the short-wavelength infrared (SWIR) atmospheric window. Nevertheless, the low light intensity values require dark current densities on the order of nA/cm(2) for detection around room temperature. Currently, with new device architectures and developments in growth and surface passivation, very low dark current density values are achievable for 1.7 mu m cutoff InGaAs detectors near room temperature, and such detectors seem to be the leadi...
Highly efficient and broadband light transmission in 90 degrees nanophotonic wire waveguide bends
KURT, HAMZA; Giden, I. H.; Ustun, K. (The Optical Society, 2011-03-01)
Nanophotonic wire silicon waveguides are indispensable components of integrated photonic circuits. Because of the inherent nature of these waveguides, such as narrow width and high-index contrast, corners with large bending radii are inevitable for efficient light transmission with small loss values, which, in turn, impedes the miniaturization of photonic components. To alleviate huge bending losses of a right angle waveguide, we designed a structure incorporating a two-dimensional (2D) photonic crystal, al...
Ultra-broadband long-wavelength infrared metamaterial absorber based on a double- layer metasurface structure
ÜSTÜN, Kadir; Sayan, Gönül (The Optical Society, 2017-02-01)
In this paper, we report a metamaterial absorber design that achieves a broad absorption band encompassing the whole long-wavelength infrared (LWIR) region. The structure consists of two parallel metasurfaces buried in an amorphous silicon dielectric layer, where the minimum size for all possible planar details does not go below 1 mu m, making the use of standard optical lithography possible for fabrication. The dielectric layer of the structure is placed over a metallic ground plane that inhibits the trans...
QWIP focal plane arrays on InP substrates for single and dual band thermal imagers
Eker, S. U.; Arslan, Y.; Kaldirim, M.; Beşikci, Cengiz (Elsevier BV, 2009-11-01)
Alternative material systems on InP substrate provide certain advantages for mid-wavelength infrared (MWIR), long-wavelength infrared (LWIR) and dual band MWIR/LWIR quantum well infrared photodetector (QWIP) focal plane arrays (FPAs). While InP/InGaAs and InP/InGaAsP LWIR QWIPs provide much higher responsivity, when compared to the AlGaAs/CaAs QWIPs, AllnAs/InGaAs system facilitates completely lattice matched single band MWIR and dual band MWIR/LWIR FPAs.
Dispersive optical constants of Tl2InGaSe4 single crystals
Qasrawi, A. F.; Hasanlı, Nızamı (IOP Publishing, 2007-09-01)
The structural and optical properties of Bridgman method grown Tl2InGaSe4 crystals have been investigated by means of room temperature x-ray diffraction, and transmittance and reflectance spectral analysis, respectively. The x-ray diffraction technique has shown that Tl2InGaSe4 is a single phase crystal of a monoclinic unit cell that exhibits the lattice parameters of a = 0.77244 nm, b = 0.64945 nm, c = 0.92205 nm and beta = 95.03 degrees . The optical data have revealed an indirect allowed transition band ...
Citation Formats
K. ÜSTÜN and G. Sayan, “Broadband LWIR and MWIR metamaterial absorbers with a simple design topology: almost perfect absorption and super-octave band operation in MWIR band,” JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40449.