Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes

2009-07-01
Lefloch, Philippe G.
Okutmuştur, Baver
Neves, Wladimir
Following Ben-Artzi and LeFloch, we consider nonlinear hyperbolic conservation laws posed on a Riemannian manifold, and we establish an L (1)-error estimate for a class of finite volume schemes allowing for the approximation of entropy solutions to the initial value problem. The error in the L (1) norm is of order h (1/4) at most, where h represents the maximal diameter of elements in the family of geodesic triangulations. The proof relies on a suitable generalization of Cockburn, Coquel, and LeFloch's theory which was originally developed in the Euclidian setting. We extend the arguments to curved manifolds, by taking into account the effects to the geometry and overcoming several new technical difficulties.
ACTA MATHEMATICA SINICA-ENGLISH SERIES

Suggestions

Hyperbolic conservation laws on manifolds with limited regularity
Lefloch, Philippe G.; Okutmuştur, Baver (Elsevier BV, 2008-05-01)
We introduce a formulation of the initial and boundary value problem for nonlinear hyperbolic conservation laws posed on a differential manifold endowed with a volume form, possibly with a boundary; in particular, this includes the important case of Lorentzian manifolds. Only limited regularity is assumed on the geometry of the manifold. For this problem, we establish the existence and uniqueness of an L-1 semi-group of weak solutions satisfying suitable entropy and boundary conditions.
Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules
IKHDAİR, SAMEER; Sever, Ramazan (Springer Science and Business Media LLC, 2009-04-01)
For arbitrary values of n and l quantum numbers, we present a simple exact analytical solution of the D-dimensional (D a parts per thousand yen 2) hyperradial Schrodinger equation with the Kratzer and the modified Kratzer potentials within the framework of the exact quantization rule (EQR) method. The exact bound state energy eigenvalues (E (nl) ) are easily calculated from this EQR method. The corresponding normalized hyperradial wave functions (psi (nl) (r)) are also calculated. The exact energy eigenvalu...
Asymptotic behavior of solutions of differential equations with piecewise constant arguments
Akhmet, Marat (Elsevier BV, 2008-09-01)
The main goal of the work is to obtain sufficient conditions for the asymptotic equivalence of a linear system of ordinary differential equations and a quasilinear system of differential equations with piecewise constant argument.
Dynamic programming for a Markov-switching jump-diffusion
Azevedo, N.; Pinheiro, D.; Weber, Gerhard Wilhelm (Elsevier BV, 2014-09-01)
We consider an optimal control problem with a deterministic finite horizon and state variable dynamics given by a Markov-switching jump-diffusion stochastic differential equation. Our main results extend the dynamic programming technique to this larger family of stochastic optimal control problems. More specifically, we provide a detailed proof of Bellman's optimality principle (or dynamic programming principle) and obtain the corresponding Hamilton-Jacobi-Belman equation, which turns out to be a partial in...
Global existence and boundedness for a class of second-order nonlinear differential equations
Tiryaki, Aydin; Zafer, Ağacık (Elsevier BV, 2013-09-01)
In this paper we obtain new conditions for the global existence and boundedness of solutions for nonlinear second-order equations of the form
Citation Formats
P. G. Lefloch, B. Okutmuştur, and W. Neves, “Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes,” ACTA MATHEMATICA SINICA-ENGLISH SERIES, pp. 1041–1066, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40640.