Bismuth plasmonics for extraordinary light absorption in deep sub-wavelength geometries

Ozbay, Imre
Ghobadi, Amir
Sayan, Gönül
In this Letter, we demonstrate an ultra-broadband metamaterial absorber of unrivaled bandwidth (BW) using extraordinary optical response of bismuth (Bi), which is the material selected through our novel analysis. Based on our theoretical model, we investigate the maximum metal- insulator-metal (MIM) cavity BW, achievable by any metal with known n-k data. We show that an ideal metal in such structures should have a positive real permittivity part in the near-infrared (NIR) regime. Contrary to noble and lossy metals utilized by most research groups in the field, this requirement is satisfied only by Bi, whose data greatly adhere to the ideal material properties predicted by our analysis. A Bi nanodisc-based MIM resonator with an absorption above 0.9 in an ultra-broadband range of 800 nm-2390 nm is designed, fabricated, and characterized. To the best of our knowledge, this is the broadest absorption BW reported for a MIM cavity in the NIR with its upper-to-lower absorption edge ratio exceeding best contenders by more than 150%. According to the findings in this Letter, the use of proper materials and dimensions will lead to realization of deep sub-wavelength efficient optical devices. (C) 2020 Optical Society of America


Nondipolar effects in the photoionization dynamics of carbon tetrafluoride
Toffolı, Danıele; Decleva, Piero (American Physical Society (APS), 2008-12-01)
The linear combination of atomic orbitals approach to the calculation of the molecular continuum spectrum with B-spline basis functions has been applied to the calculation of the first-order nondipolar corrections to the photoelectron angular distributions from carbon tetrafluoride. Dipolar and nondipolar asymmetry parameter profiles have been calculated for every single-particle orbital ionization. A comparison with the available experimental data gives good agreement for the dipolar asymmetry parameter. N...
High power microsecond fiber laser at 1.5 μm
Pavlova, Svitlana; Yagci, M. Emre; Eken, S. Koray; Tunckol, Ersan; Pavlov, Ihor (The Optical Society, 2020-06-08)
© 2020 Optical Society of America.In this work, we demonstrate a single frequency, high power fiber-laser system, operating at 1550 nm, generating controllable rectangular-shape μs pulses. In order to control the amplified spontaneous emission content, and overcome the undesirable pulse steepening during the amplification, a new method with two seed sources operating at 1550 nm and 1560 nm are used in this system. The output power is about 35 W in CW mode, and the peak power is around 32 W in the pulsed mod...
Correlation between optical path modulations and transmittance spectra of a-Si : H thin films
Akaoglu, B; Atilgan, I; Katircioglu, B (The Optical Society, 2000-04-01)
The optical constants of plasma-enhanced chemical-vapor-deposited amorphous silicon (a-Si:H) thin film upon a transparent substrate are determined within the UV-visible region by measurement of the transmittance spectrum. Apart from thickness irregularities, the effects of vertical film inhomogeneities (refractive-index distribution) on the spectrum are discussed. In this respect, although consideration of any possible variation in thickness of the film within the area illuminated by the probe beam is suffi...
Strong oscillations in the nondipole corrections to the photoelectron angular distributions from C-60
Toffolı, Danıele; Decleva, Piero (American Physical Society (APS), 2010-06-25)
Nondipolar corrections to the photoelectron angular distributions from C-60 have been calculated for the highest occupied molecular orbital ( HOMO), HOMO-1, and HOMO-2 photoemission bands. The computational method employed takes advantage of a parallel algorithm that uses a multicentric expansion of bound- and scattering-wave functions and a density-functional theory one-particle Hamiltonian. First-order nondipolar asymmetry parameters have been calculated from thresholds of up to 160 eV of photon energy. S...
Dispersive optical constants of Tl2InGaSe4 single crystals
Qasrawi, A. F.; Hasanlı, Nızamı (IOP Publishing, 2007-09-01)
The structural and optical properties of Bridgman method grown Tl2InGaSe4 crystals have been investigated by means of room temperature x-ray diffraction, and transmittance and reflectance spectral analysis, respectively. The x-ray diffraction technique has shown that Tl2InGaSe4 is a single phase crystal of a monoclinic unit cell that exhibits the lattice parameters of a = 0.77244 nm, b = 0.64945 nm, c = 0.92205 nm and beta = 95.03 degrees . The optical data have revealed an indirect allowed transition band ...
Citation Formats
I. Ozbay, A. Ghobadi, B. BÜTÜN, and G. Sayan, “Bismuth plasmonics for extraordinary light absorption in deep sub-wavelength geometries,” OPTICS LETTERS, pp. 686–689, 2020, Accessed: 00, 2020. [Online]. Available: