Interturn short-circuit faults in permanent magnet synchronous machines: An extended review and comprehensive analysis

2018-12-01
Zafarani, Mohsen
Bostancı, Emine
Qi, Yuan
GÖKTAŞ, TANER
Akin, Bilal
This paper presents an extended review and recent advances in modeling and diagnosis of interturn short circuit (ITSC) faults in permanent magnet synchronous machines, supported with in-depth fault analysis. In the analysis part, the influence of the fault intensity on the machine's parameters and performance is analyzed at various operating conditions through finite-element analysis, drive system models, and test bench measurements. The presented findings shed light on the fault signatures and factors that are affecting signature dynamics such as the fault intensity, operating conditions, resistance of the short-circuiting path, and controller action. Following the characterization of the ITSC fault, a detailed literature review on fault signature types and state-of-the art diagnosis methods are presented. The corresponding trends, shortcomings of current solutions, and potential research topics are discussed exhaustively.
IEEE Journal of Emerging and Selected Topics in Power Electronics

Suggestions

Line Current Analysis for Bearing fault Detection In Induction Motors Using Hilbert Transform Phase
Oumaamar, M. E. K.; Razik, H.; Rezzoug, A.; Khezzar, A. (2011-09-10)
The present paper focuses by means of an experimental study, on the effect of a bearing fault on the stator current signatures in induction motors. The variation in the amplitude of the characteristic components is not so significant. For that and in order to depict the presence of the fault harmonic signatures, the authors used the phase analysis of Hilbert transform applied on the spectrum modulus of the line current.
PWM inverter harmonics contributions to the inverter-fed induction machine bearing fault diagnosis
Akin, Bilal; Toliyat, Hamid A.; Orguner, Umut; Rayner, Mark (2007-03-01)
The effects of inverter harmonics on motor current fault signatures are studied in detail in this paper. According to theory and experimentation, the fault signatures caused by the inverter harmonics are similar and comparable to those generated by the fundamental harmonic of the line current. Unlike the utility-driven motor, monitoring the current of the inverter-fed motor is considerably noisy, which can mask the fault signatures and render a wrong fault warning. Therefore, the proposed additional fault d...
Low-cost motor drive-embedded fault diagnosis a simple harmonic analyzer
AKIN, Bilal; TOLIYAT, Hamid A.; Orguner, Umut; RAYNER, Mark (2007-03-01)
The reference frame theory and its applications to fault diagnosis of electric machinery as a powerful tool to find the magnitude and phase quantities of fault signatures are explored in this paper. The core idea is to convert the associated fault signature to a dc quantity, followed by calculating the signal average value in the new reference frame to filter out the rest of the signal harmonics, i. e. its ac components. Broken rotor bar and rotor eccentricity faults are experimentally tested both offline u...
Turn to Turn Fault Diagnosis for Induction Machines Based on Wavelet Transformation and BP Neural Network
Najafi, Atabak; Iskender, Iris; Farhadi, Pavam; Najafi, Babak (2011-09-10)
Based upon Wavelet Transformation analysis and BP neural network, a method for the fault diagnosis of stator winding is proposed in this paper. Firstly wavelet transformation was used to decompose vibration time signal of stator to extract the characteristic values - wavelet transformation energy, and features were input in to the BP NN. After training the BP NN could be used to identify the stator winding fault (Turn to Turn fault) patterns. Three typical turn to turn faults as 10 turn, 20 turn and 35 turn...
Analysis and Fault Tolerant Control of a Five-Phase Axial Flux Permanent Magnet Synchronous Machine
Bayazıt, Göksenin Hande; Keysan, Ozan; Department of Electrical and Electronics Engineering (2021-9-06)
This study investigates the fault-tolerance capability of an air-cored, axial flux, five-phase permanent magnet synchronous machine. The air-cored stator is designed by adopting a novel winding topology that is called flat winding. The coils of flat winding are made by bending and grouping one within another of the flat wires made of a laser-cut thin aluminum sheet. This topology provides superior current ratings, better cooling performance, and a robust structure for the stator. As the coils are covered w...
Citation Formats
M. Zafarani, E. Bostancı, Y. Qi, T. GÖKTAŞ, and B. Akin, “Interturn short-circuit faults in permanent magnet synchronous machines: An extended review and comprehensive analysis,” IEEE Journal of Emerging and Selected Topics in Power Electronics, pp. 2173–2191, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41067.